|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import gradio as gr |
|
import scripts |
|
from PIL import Image |
|
import numpy as np |
|
import importlib |
|
from modules import scripts |
|
from .deforum_controlnet_gradio import hide_ui_by_cn_status, hide_file_textboxes, ToolButton |
|
from .general_utils import count_files_in_folder, clean_gradio_path_strings |
|
from .video_audio_utilities import vid2frames, convert_image |
|
from .animation_key_frames import ControlNetKeys |
|
from .load_images import load_image |
|
from .general_utils import debug_print |
|
|
|
cnet = None |
|
|
|
num_of_models = 5 |
|
|
|
def find_controlnet(): |
|
global cnet |
|
if cnet: return cnet |
|
try: |
|
cnet = importlib.import_module('extensions.sd-webui-controlnet.scripts.external_code', 'external_code') |
|
except: |
|
try: |
|
cnet = importlib.import_module('extensions-builtin.sd-webui-controlnet.scripts.external_code', 'external_code') |
|
except: |
|
pass |
|
if cnet: |
|
print(f"\033[0;32m*Deforum ControlNet support: enabled*\033[0m") |
|
return True |
|
return None |
|
|
|
def controlnet_infotext(): |
|
return """Requires the <a style='color:SteelBlue;' target='_blank' href='https://github.com/Mikubill/sd-webui-controlnet'>ControlNet</a> extension to be installed.</p> |
|
<p">If Deforum crashes due to CN updates, go <a style='color:Orange;' target='_blank' href='https://github.com/Mikubill/sd-webui-controlnet/issues'>here</a> and report your problem.</p> |
|
""" |
|
|
|
def is_controlnet_enabled(controlnet_args): |
|
for i in range(1, num_of_models + 1): |
|
if getattr(controlnet_args, f'cn_{i}_enabled', False): |
|
return True |
|
return False |
|
|
|
def setup_controlnet_ui_raw(): |
|
cnet = find_controlnet() |
|
cn_models = cnet.get_models() |
|
cn_preprocessors = cnet.get_modules() |
|
|
|
cn_modules = cnet.get_modules_detail() |
|
preprocessor_sliders_config = {} |
|
|
|
for config_name, config_values in cn_modules.items(): |
|
sliders = config_values.get('sliders', []) |
|
preprocessor_sliders_config[config_name] = sliders |
|
|
|
model_free_preprocessors = ["reference_only", "reference_adain", "reference_adain+attn"] |
|
flag_preprocessor_resolution = "Preprocessor Resolution" |
|
|
|
def build_sliders(module, pp): |
|
grs = [] |
|
if module not in preprocessor_sliders_config: |
|
grs += [ |
|
gr.update(label=flag_preprocessor_resolution, value=512, minimum=64, maximum=2048, step=1, visible=not pp, interactive=not pp), |
|
gr.update(visible=False, interactive=False), |
|
gr.update(visible=False, interactive=False), |
|
gr.update(visible=True) |
|
] |
|
else: |
|
for slider_config in preprocessor_sliders_config[module]: |
|
if isinstance(slider_config, dict): |
|
visible = True |
|
if slider_config['name'] == flag_preprocessor_resolution: |
|
visible = not pp |
|
grs.append(gr.update( |
|
label=slider_config['name'], |
|
value=slider_config['value'], |
|
minimum=slider_config['min'], |
|
maximum=slider_config['max'], |
|
step=slider_config['step'] if 'step' in slider_config else 1, |
|
visible=visible, |
|
interactive=visible)) |
|
else: |
|
grs.append(gr.update(visible=False, interactive=False)) |
|
while len(grs) < 3: |
|
grs.append(gr.update(visible=False, interactive=False)) |
|
grs.append(gr.update(visible=True)) |
|
if module in model_free_preprocessors: |
|
grs += [gr.update(visible=False, value='None'), gr.update(visible=False)] |
|
else: |
|
grs += [gr.update(visible=True), gr.update(visible=True)] |
|
return grs |
|
|
|
refresh_symbol = '\U0001f504' |
|
switch_values_symbol = '\U000021C5' |
|
model_dropdowns = [] |
|
infotext_fields = [] |
|
|
|
def create_model_in_tab_ui(cn_id): |
|
with gr.Row(): |
|
enabled = gr.Checkbox(label="Enable", value=False, interactive=True) |
|
pixel_perfect = gr.Checkbox(label="Pixel Perfect", value=False, visible=False, interactive=True) |
|
low_vram = gr.Checkbox(label="Low VRAM", value=False, visible=False, interactive=True) |
|
overwrite_frames = gr.Checkbox(label='Overwrite input frames', value=True, visible=False, interactive=True) |
|
with gr.Row(visible=False) as mod_row: |
|
module = gr.Dropdown(cn_preprocessors, label=f"Preprocessor", value="none", interactive=True) |
|
model = gr.Dropdown(cn_models, label=f"Model", value="None", interactive=True) |
|
refresh_models = ToolButton(value=refresh_symbol) |
|
refresh_models.click(refresh_all_models, model, model) |
|
with gr.Row(visible=False) as weight_row: |
|
weight = gr.Textbox(label="Weight schedule", lines=1, value='0:(1)', interactive=True) |
|
with gr.Row(visible=False) as start_cs_row: |
|
guidance_start = gr.Textbox(label="Starting Control Step schedule", lines=1, value='0:(0.0)', interactive=True) |
|
with gr.Row(visible=False) as end_cs_row: |
|
guidance_end = gr.Textbox(label="Ending Control Step schedule", lines=1, value='0:(1.0)', interactive=True) |
|
model_dropdowns.append(model) |
|
with gr.Column(visible=False) as advanced_column: |
|
processor_res = gr.Slider(label="Annotator resolution", value=64, minimum=64, maximum=2048, interactive=False) |
|
threshold_a = gr.Slider(label="Threshold A", value=64, minimum=64, maximum=1024, interactive=False) |
|
threshold_b = gr.Slider(label="Threshold B", value=64, minimum=64, maximum=1024, interactive=False) |
|
with gr.Row(visible=False) as vid_path_row: |
|
vid_path = gr.Textbox(value='', label="ControlNet Input Video/ Image Path", interactive=True) |
|
with gr.Row(visible=False) as mask_vid_path_row: |
|
mask_vid_path = gr.Textbox(value='', label="ControlNet Mask Video/ Image Path (*NOT WORKING, kept in UI for CN's devs testing!*)", interactive=True) |
|
with gr.Row(visible=False) as control_mode_row: |
|
control_mode = gr.Radio(choices=["Balanced", "My prompt is more important", "ControlNet is more important"], value="Balanced", label="Control Mode", interactive=True) |
|
with gr.Row(visible=False) as env_row: |
|
resize_mode = gr.Radio(choices=["Outer Fit (Shrink to Fit)", "Inner Fit (Scale to Fit)", "Just Resize"], value="Inner Fit (Scale to Fit)", label="Resize Mode", interactive=True) |
|
with gr.Row(visible=False) as control_loopback_row: |
|
loopback_mode = gr.Checkbox(label="LoopBack mode", value=False, interactive=True) |
|
hide_output_list = [pixel_perfect, low_vram, mod_row, module, weight_row, start_cs_row, end_cs_row, env_row, overwrite_frames, vid_path_row, control_mode_row, mask_vid_path_row, |
|
control_loopback_row] |
|
for cn_output in hide_output_list: |
|
enabled.change(fn=hide_ui_by_cn_status, inputs=enabled, outputs=cn_output) |
|
module.change(build_sliders, inputs=[module, pixel_perfect], outputs=[processor_res, threshold_a, threshold_b, advanced_column, model, refresh_models]) |
|
|
|
loopback_outs = [vid_path_row, mask_vid_path_row] |
|
for loopback_output in loopback_outs: |
|
loopback_mode.change(fn=hide_file_textboxes, inputs=loopback_mode, outputs=loopback_output) |
|
|
|
pixel_perfect.change(build_sliders, inputs=[module, pixel_perfect], outputs=[processor_res, threshold_a, threshold_b, advanced_column, model, refresh_models]) |
|
infotext_fields.extend([ |
|
(module, f"ControlNet Preprocessor"), |
|
(model, f"ControlNet Model"), |
|
(weight, f"ControlNet Weight"), |
|
]) |
|
|
|
return {key: value for key, value in locals().items() if key in [ |
|
"enabled", "pixel_perfect", "low_vram", "module", "model", "weight", |
|
"guidance_start", "guidance_end", "processor_res", "threshold_a", "threshold_b", "resize_mode", "control_mode", |
|
"overwrite_frames", "vid_path", "mask_vid_path", "loopback_mode" |
|
]} |
|
|
|
def refresh_all_models(*inputs): |
|
cn_models = cnet.get_models(update=True) |
|
dd = inputs[0] |
|
selected = dd if dd in cn_models else "None" |
|
return gr.Dropdown.update(value=selected, choices=cn_models) |
|
|
|
with gr.TabItem('ControlNet'): |
|
gr.HTML(controlnet_infotext()) |
|
with gr.Tabs(): |
|
model_params = {} |
|
for i in range(1, num_of_models + 1): |
|
with gr.Tab(f"CN Model {i}"): |
|
model_params[i] = create_model_in_tab_ui(i) |
|
|
|
for key, value in model_params[i].items(): |
|
locals()[f"cn_{i}_{key}"] = value |
|
|
|
return locals() |
|
|
|
def setup_controlnet_ui(): |
|
if not find_controlnet(): |
|
gr.HTML("""<a style='target='_blank' href='https://github.com/Mikubill/sd-webui-controlnet'>ControlNet not found. Please install it :)</a>""", elem_id='controlnet_not_found_html_msg') |
|
return {} |
|
|
|
try: |
|
return setup_controlnet_ui_raw() |
|
except Exception as e: |
|
print(f"'ControlNet UI setup failed with error: '{e}'!") |
|
gr.HTML(f""" |
|
Failed to setup ControlNet UI, check the reason in your commandline log. Please, downgrade your CN extension to <a style='color:Orange;' target='_blank' href='https://github.com/Mikubill/sd-webui-controlnet/archive/c9340671d6d59e5a79fc404f78f747f969f87374.zip'>c9340671d6d59e5a79fc404f78f747f969f87374</a> or report the problem <a style='color:Orange;' target='_blank' href='https://github.com/Mikubill/sd-webui-controlnet/issues'>here</a>. |
|
""", elem_id='controlnet_not_found_html_msg') |
|
return {} |
|
|
|
def controlnet_component_names(): |
|
if not find_controlnet(): |
|
return [] |
|
|
|
return [f'cn_{i}_{component}' for i in range(1, num_of_models + 1) for component in [ |
|
'overwrite_frames', 'vid_path', 'mask_vid_path', 'enabled', |
|
'low_vram', 'pixel_perfect', |
|
'module', 'model', 'weight', 'guidance_start', 'guidance_end', |
|
'processor_res', 'threshold_a', 'threshold_b', 'resize_mode', 'control_mode', 'loopback_mode' |
|
]] |
|
|
|
def process_with_controlnet(p, args, anim_args, controlnet_args, root, parseq_adapter, is_img2img=True, frame_idx=0): |
|
CnSchKeys = ControlNetKeys(anim_args, controlnet_args) if not parseq_adapter.use_parseq else parseq_adapter.cn_keys |
|
|
|
def read_cn_data(cn_idx): |
|
cn_mask_np, cn_image_np = None, None |
|
|
|
if getattr(controlnet_args, f'cn_{cn_idx}_loopback_mode'): |
|
|
|
if frame_idx == 0 and args.use_init and (args.init_image is not None or args.init_image_box is not None): |
|
cn_image_np = load_image(args.init_image, args.init_image_box) |
|
|
|
cn_image_np = np.array(cn_image_np).astype('uint8') |
|
|
|
elif frame_idx > 0 and root.init_sample: |
|
cn_image_np = np.array(root.init_sample).astype('uint8') |
|
else: |
|
cn_inputframes = os.path.join(args.outdir, f'controlnet_{cn_idx}_inputframes') |
|
if os.path.exists(cn_inputframes): |
|
if count_files_in_folder(cn_inputframes) == 1: |
|
cn_frame_path = os.path.join(cn_inputframes, "000000000.jpg") |
|
print(f'Reading ControlNet *static* base frame at {cn_frame_path}') |
|
else: |
|
cn_frame_path = os.path.join(cn_inputframes, f"{frame_idx:09}.jpg") |
|
print(f'Reading ControlNet {cn_idx} base frame #{frame_idx} at {cn_frame_path}') |
|
if os.path.exists(cn_frame_path): |
|
cn_image_np = np.array(Image.open(cn_frame_path).convert("RGB")).astype('uint8') |
|
cn_maskframes = os.path.join(args.outdir, f'controlnet_{cn_idx}_maskframes') |
|
if os.path.exists(cn_maskframes): |
|
if count_files_in_folder(cn_maskframes) == 1: |
|
cn_mask_frame_path = os.path.join(cn_inputframes, "000000000.jpg") |
|
print(f'Reading ControlNet *static* mask frame at {cn_mask_frame_path}') |
|
else: |
|
cn_mask_frame_path = os.path.join(args.outdir, f'controlnet_{cn_idx}_maskframes', f"{frame_idx:09}.jpg") |
|
print(f'Reading ControlNet {cn_idx} mask frame #{frame_idx} at {cn_mask_frame_path}') |
|
if os.path.exists(cn_mask_frame_path): |
|
cn_mask_np = np.array(Image.open(cn_mask_frame_path).convert("RGB")).astype('uint8') |
|
|
|
return cn_mask_np, cn_image_np |
|
|
|
cnet = find_controlnet() |
|
cn_data = [read_cn_data(i) for i in range(1, num_of_models + 1)] |
|
|
|
|
|
any_loopback_mode = any(getattr(controlnet_args, f'cn_{i}_loopback_mode') for i in range(1, num_of_models + 1)) |
|
|
|
cn_inputframes_list = [os.path.join(args.outdir, f'controlnet_{i}_inputframes') for i in range(1, num_of_models + 1)] |
|
|
|
if not any(os.path.exists(cn_inputframes) for cn_inputframes in cn_inputframes_list) and not any_loopback_mode: |
|
print(f'\033[33mNeither the base nor the masking frames for ControlNet were found. Using the regular pipeline\033[0m') |
|
|
|
p.scripts = scripts.scripts_img2img if is_img2img else scripts.scripts_txt2img |
|
|
|
def create_cnu_dict(cn_args, prefix, img_np, mask_np, frame_idx, CnSchKeys): |
|
|
|
keys = [ |
|
"enabled", "module", "model", "weight", "resize_mode", "control_mode", "low_vram", "pixel_perfect", |
|
"processor_res", "threshold_a", "threshold_b", "guidance_start", "guidance_end" |
|
] |
|
cnu = {k: getattr(cn_args, f"{prefix}_{k}") for k in keys} |
|
model_num = int(prefix.split('_')[-1]) |
|
if 1 <= model_num <= 5: |
|
|
|
if getattr(cn_args, f"cn_{model_num}_loopback_mode") and frame_idx == 0 and img_np is None: |
|
cnu['enabled'] = False |
|
cnu['weight'] = getattr(CnSchKeys, f"cn_{model_num}_weight_schedule_series")[frame_idx] |
|
cnu['guidance_start'] = getattr(CnSchKeys, f"cn_{model_num}_guidance_start_schedule_series")[frame_idx] |
|
cnu['guidance_end'] = getattr(CnSchKeys, f"cn_{model_num}_guidance_end_schedule_series")[frame_idx] |
|
if cnu['enabled']: |
|
debug_print(f"ControlNet {model_num}: weight={cnu['weight']}, guidance_start={cnu['guidance_start']}, guidance_end={cnu['guidance_end']}") |
|
cnu['image'] = {'image': img_np, 'mask': mask_np} if mask_np is not None else img_np |
|
|
|
return cnu |
|
|
|
masks_np, images_np = zip(*cn_data) |
|
|
|
cn_units = [cnet.ControlNetUnit(**create_cnu_dict(controlnet_args, f"cn_{i + 1}", img_np, mask_np, frame_idx, CnSchKeys)) |
|
for i, (img_np, mask_np) in enumerate(zip(images_np, masks_np))] |
|
|
|
p.script_args = {"enabled": True} |
|
cnet.update_cn_script_in_processing(p, cn_units, is_img2img=is_img2img, is_ui=False) |
|
|
|
def process_controlnet_input_frames(args, anim_args, controlnet_args, video_path, mask_path, outdir_suffix, id): |
|
if (video_path or mask_path) and getattr(controlnet_args, f'cn_{id}_enabled'): |
|
frame_path = os.path.join(args.outdir, f'controlnet_{id}_{outdir_suffix}') |
|
os.makedirs(frame_path, exist_ok=True) |
|
|
|
accepted_image_extensions = ('.jpg', '.jpeg', '.png', '.bmp') |
|
if video_path and video_path.lower().endswith(accepted_image_extensions): |
|
convert_image(video_path, os.path.join(frame_path, '000000000.jpg')) |
|
print(f"Copied CN Model {id}'s single input image to inputframes folder!") |
|
elif mask_path and mask_path.lower().endswith(accepted_image_extensions): |
|
convert_image(mask_path, os.path.join(frame_path, '000000000.jpg')) |
|
print(f"Copied CN Model {id}'s single input image to inputframes *mask* folder!") |
|
else: |
|
print(f'Unpacking ControlNet {id} {"video mask" if mask_path else "base video"}') |
|
print(f"Exporting Video Frames to {frame_path}...") |
|
vid2frames( |
|
video_path=video_path or mask_path, |
|
video_in_frame_path=frame_path, |
|
n=1 if anim_args.animation_mode != 'Video Input' else anim_args.extract_nth_frame, |
|
overwrite=getattr(controlnet_args, f'cn_{id}_overwrite_frames'), |
|
extract_from_frame=0 if anim_args.animation_mode != 'Video Input' else anim_args.extract_from_frame, |
|
extract_to_frame=(anim_args.max_frames - 1) if anim_args.animation_mode != 'Video Input' else anim_args.extract_to_frame, |
|
numeric_files_output=True |
|
) |
|
print(f"Loading {anim_args.max_frames} input frames from {frame_path} and saving video frames to {args.outdir}") |
|
print(f'ControlNet {id} {"video mask" if mask_path else "base video"} unpacked!') |
|
|
|
def unpack_controlnet_vids(args, anim_args, controlnet_args): |
|
|
|
|
|
for i in range(1, num_of_models + 1): |
|
|
|
if getattr(controlnet_args, f'cn_{i}_loopback_mode'): |
|
print(f"ControlNet #{i} is in LoopBack mode, skipping video/ image extraction stage.") |
|
continue |
|
vid_path = clean_gradio_path_strings(getattr(controlnet_args, f'cn_{i}_vid_path', None)) |
|
mask_path = clean_gradio_path_strings(getattr(controlnet_args, f'cn_{i}_mask_vid_path', None)) |
|
|
|
if vid_path: |
|
process_controlnet_input_frames(args, anim_args, controlnet_args, vid_path, None, 'inputframes', i) |
|
|
|
if mask_path: |
|
process_controlnet_input_frames(args, anim_args, controlnet_args, None, mask_path, 'maskframes', i) |
|
|