File size: 19,632 Bytes
81f4d3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
# Copyright (C) 2023 Deforum LLC
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, version 3 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# Contact the authors: https://deforum.github.io/
# This helper script is responsible for ControlNet/Deforum integration
# https://github.com/Mikubill/sd-webui-controlnet — controlnet repo
import os
import gradio as gr
import scripts
from PIL import Image
import numpy as np
import importlib
from modules import scripts
from .deforum_controlnet_gradio import hide_ui_by_cn_status, hide_file_textboxes, ToolButton
from .general_utils import count_files_in_folder, clean_gradio_path_strings # TODO: do it another way
from .video_audio_utilities import vid2frames, convert_image
from .animation_key_frames import ControlNetKeys
from .load_images import load_image
from .general_utils import debug_print
cnet = None
# number of CN model tabs to show in the deforum gui
num_of_models = 5
def find_controlnet():
global cnet
if cnet: return cnet
try:
cnet = importlib.import_module('extensions.sd-webui-controlnet.scripts.external_code', 'external_code')
except:
try:
cnet = importlib.import_module('extensions-builtin.sd-webui-controlnet.scripts.external_code', 'external_code')
except:
pass
if cnet:
print(f"\033[0;32m*Deforum ControlNet support: enabled*\033[0m")
return True
return None
def controlnet_infotext():
return """Requires the <a style='color:SteelBlue;' target='_blank' href='https://github.com/Mikubill/sd-webui-controlnet'>ControlNet</a> extension to be installed.</p>
<p">If Deforum crashes due to CN updates, go <a style='color:Orange;' target='_blank' href='https://github.com/Mikubill/sd-webui-controlnet/issues'>here</a> and report your problem.</p>
"""
def is_controlnet_enabled(controlnet_args):
for i in range(1, num_of_models + 1):
if getattr(controlnet_args, f'cn_{i}_enabled', False):
return True
return False
def setup_controlnet_ui_raw():
cnet = find_controlnet()
cn_models = cnet.get_models()
cn_preprocessors = cnet.get_modules()
cn_modules = cnet.get_modules_detail()
preprocessor_sliders_config = {}
for config_name, config_values in cn_modules.items():
sliders = config_values.get('sliders', [])
preprocessor_sliders_config[config_name] = sliders
model_free_preprocessors = ["reference_only", "reference_adain", "reference_adain+attn"]
flag_preprocessor_resolution = "Preprocessor Resolution"
def build_sliders(module, pp):
grs = []
if module not in preprocessor_sliders_config:
grs += [
gr.update(label=flag_preprocessor_resolution, value=512, minimum=64, maximum=2048, step=1, visible=not pp, interactive=not pp),
gr.update(visible=False, interactive=False),
gr.update(visible=False, interactive=False),
gr.update(visible=True)
]
else:
for slider_config in preprocessor_sliders_config[module]:
if isinstance(slider_config, dict):
visible = True
if slider_config['name'] == flag_preprocessor_resolution:
visible = not pp
grs.append(gr.update(
label=slider_config['name'],
value=slider_config['value'],
minimum=slider_config['min'],
maximum=slider_config['max'],
step=slider_config['step'] if 'step' in slider_config else 1,
visible=visible,
interactive=visible))
else:
grs.append(gr.update(visible=False, interactive=False))
while len(grs) < 3:
grs.append(gr.update(visible=False, interactive=False))
grs.append(gr.update(visible=True))
if module in model_free_preprocessors:
grs += [gr.update(visible=False, value='None'), gr.update(visible=False)]
else:
grs += [gr.update(visible=True), gr.update(visible=True)]
return grs
refresh_symbol = '\U0001f504' # 🔄
switch_values_symbol = '\U000021C5' # ⇅
model_dropdowns = []
infotext_fields = []
def create_model_in_tab_ui(cn_id):
with gr.Row():
enabled = gr.Checkbox(label="Enable", value=False, interactive=True)
pixel_perfect = gr.Checkbox(label="Pixel Perfect", value=False, visible=False, interactive=True)
low_vram = gr.Checkbox(label="Low VRAM", value=False, visible=False, interactive=True)
overwrite_frames = gr.Checkbox(label='Overwrite input frames', value=True, visible=False, interactive=True)
with gr.Row(visible=False) as mod_row:
module = gr.Dropdown(cn_preprocessors, label=f"Preprocessor", value="none", interactive=True)
model = gr.Dropdown(cn_models, label=f"Model", value="None", interactive=True)
refresh_models = ToolButton(value=refresh_symbol)
refresh_models.click(refresh_all_models, model, model)
with gr.Row(visible=False) as weight_row:
weight = gr.Textbox(label="Weight schedule", lines=1, value='0:(1)', interactive=True)
with gr.Row(visible=False) as start_cs_row:
guidance_start = gr.Textbox(label="Starting Control Step schedule", lines=1, value='0:(0.0)', interactive=True)
with gr.Row(visible=False) as end_cs_row:
guidance_end = gr.Textbox(label="Ending Control Step schedule", lines=1, value='0:(1.0)', interactive=True)
model_dropdowns.append(model)
with gr.Column(visible=False) as advanced_column:
processor_res = gr.Slider(label="Annotator resolution", value=64, minimum=64, maximum=2048, interactive=False)
threshold_a = gr.Slider(label="Threshold A", value=64, minimum=64, maximum=1024, interactive=False)
threshold_b = gr.Slider(label="Threshold B", value=64, minimum=64, maximum=1024, interactive=False)
with gr.Row(visible=False) as vid_path_row:
vid_path = gr.Textbox(value='', label="ControlNet Input Video/ Image Path", interactive=True)
with gr.Row(visible=False) as mask_vid_path_row: # invisible temporarily since 26-04-23 until masks are fixed
mask_vid_path = gr.Textbox(value='', label="ControlNet Mask Video/ Image Path (*NOT WORKING, kept in UI for CN's devs testing!*)", interactive=True)
with gr.Row(visible=False) as control_mode_row:
control_mode = gr.Radio(choices=["Balanced", "My prompt is more important", "ControlNet is more important"], value="Balanced", label="Control Mode", interactive=True)
with gr.Row(visible=False) as env_row:
resize_mode = gr.Radio(choices=["Outer Fit (Shrink to Fit)", "Inner Fit (Scale to Fit)", "Just Resize"], value="Inner Fit (Scale to Fit)", label="Resize Mode", interactive=True)
with gr.Row(visible=False) as control_loopback_row:
loopback_mode = gr.Checkbox(label="LoopBack mode", value=False, interactive=True)
hide_output_list = [pixel_perfect, low_vram, mod_row, module, weight_row, start_cs_row, end_cs_row, env_row, overwrite_frames, vid_path_row, control_mode_row, mask_vid_path_row,
control_loopback_row] # add mask_vid_path_row when masks are working again
for cn_output in hide_output_list:
enabled.change(fn=hide_ui_by_cn_status, inputs=enabled, outputs=cn_output)
module.change(build_sliders, inputs=[module, pixel_perfect], outputs=[processor_res, threshold_a, threshold_b, advanced_column, model, refresh_models])
# hide vid/image input fields
loopback_outs = [vid_path_row, mask_vid_path_row]
for loopback_output in loopback_outs:
loopback_mode.change(fn=hide_file_textboxes, inputs=loopback_mode, outputs=loopback_output)
# handle pixel perfect ui changes
pixel_perfect.change(build_sliders, inputs=[module, pixel_perfect], outputs=[processor_res, threshold_a, threshold_b, advanced_column, model, refresh_models])
infotext_fields.extend([
(module, f"ControlNet Preprocessor"),
(model, f"ControlNet Model"),
(weight, f"ControlNet Weight"),
])
return {key: value for key, value in locals().items() if key in [
"enabled", "pixel_perfect", "low_vram", "module", "model", "weight",
"guidance_start", "guidance_end", "processor_res", "threshold_a", "threshold_b", "resize_mode", "control_mode",
"overwrite_frames", "vid_path", "mask_vid_path", "loopback_mode"
]}
def refresh_all_models(*inputs):
cn_models = cnet.get_models(update=True)
dd = inputs[0]
selected = dd if dd in cn_models else "None"
return gr.Dropdown.update(value=selected, choices=cn_models)
with gr.TabItem('ControlNet'):
gr.HTML(controlnet_infotext())
with gr.Tabs():
model_params = {}
for i in range(1, num_of_models + 1):
with gr.Tab(f"CN Model {i}"):
model_params[i] = create_model_in_tab_ui(i)
for key, value in model_params[i].items():
locals()[f"cn_{i}_{key}"] = value
return locals()
def setup_controlnet_ui():
if not find_controlnet():
gr.HTML("""<a style='target='_blank' href='https://github.com/Mikubill/sd-webui-controlnet'>ControlNet not found. Please install it :)</a>""", elem_id='controlnet_not_found_html_msg')
return {}
try:
return setup_controlnet_ui_raw()
except Exception as e:
print(f"'ControlNet UI setup failed with error: '{e}'!")
gr.HTML(f"""
Failed to setup ControlNet UI, check the reason in your commandline log. Please, downgrade your CN extension to <a style='color:Orange;' target='_blank' href='https://github.com/Mikubill/sd-webui-controlnet/archive/c9340671d6d59e5a79fc404f78f747f969f87374.zip'>c9340671d6d59e5a79fc404f78f747f969f87374</a> or report the problem <a style='color:Orange;' target='_blank' href='https://github.com/Mikubill/sd-webui-controlnet/issues'>here</a>.
""", elem_id='controlnet_not_found_html_msg')
return {}
def controlnet_component_names():
if not find_controlnet():
return []
return [f'cn_{i}_{component}' for i in range(1, num_of_models + 1) for component in [
'overwrite_frames', 'vid_path', 'mask_vid_path', 'enabled',
'low_vram', 'pixel_perfect',
'module', 'model', 'weight', 'guidance_start', 'guidance_end',
'processor_res', 'threshold_a', 'threshold_b', 'resize_mode', 'control_mode', 'loopback_mode'
]]
def process_with_controlnet(p, args, anim_args, controlnet_args, root, parseq_adapter, is_img2img=True, frame_idx=0):
CnSchKeys = ControlNetKeys(anim_args, controlnet_args) if not parseq_adapter.use_parseq else parseq_adapter.cn_keys
def read_cn_data(cn_idx):
cn_mask_np, cn_image_np = None, None
# Loopback mode ENABLED:
if getattr(controlnet_args, f'cn_{cn_idx}_loopback_mode'):
# On very first frame, check if use init enabled, and if init image is provided
if frame_idx == 0 and args.use_init and (args.init_image is not None or args.init_image_box is not None):
cn_image_np = load_image(args.init_image, args.init_image_box)
# convert to uint8 for compatibility with CN
cn_image_np = np.array(cn_image_np).astype('uint8')
# Not first frame, use previous img (init_sample)
elif frame_idx > 0 and root.init_sample:
cn_image_np = np.array(root.init_sample).astype('uint8')
else: # loopback mode is DISABLED
cn_inputframes = os.path.join(args.outdir, f'controlnet_{cn_idx}_inputframes') # set input frames folder path
if os.path.exists(cn_inputframes):
if count_files_in_folder(cn_inputframes) == 1:
cn_frame_path = os.path.join(cn_inputframes, "000000000.jpg")
print(f'Reading ControlNet *static* base frame at {cn_frame_path}')
else:
cn_frame_path = os.path.join(cn_inputframes, f"{frame_idx:09}.jpg")
print(f'Reading ControlNet {cn_idx} base frame #{frame_idx} at {cn_frame_path}')
if os.path.exists(cn_frame_path):
cn_image_np = np.array(Image.open(cn_frame_path).convert("RGB")).astype('uint8')
cn_maskframes = os.path.join(args.outdir, f'controlnet_{cn_idx}_maskframes') # set mask frames folder path
if os.path.exists(cn_maskframes):
if count_files_in_folder(cn_maskframes) == 1:
cn_mask_frame_path = os.path.join(cn_inputframes, "000000000.jpg")
print(f'Reading ControlNet *static* mask frame at {cn_mask_frame_path}')
else:
cn_mask_frame_path = os.path.join(args.outdir, f'controlnet_{cn_idx}_maskframes', f"{frame_idx:09}.jpg")
print(f'Reading ControlNet {cn_idx} mask frame #{frame_idx} at {cn_mask_frame_path}')
if os.path.exists(cn_mask_frame_path):
cn_mask_np = np.array(Image.open(cn_mask_frame_path).convert("RGB")).astype('uint8')
return cn_mask_np, cn_image_np
cnet = find_controlnet()
cn_data = [read_cn_data(i) for i in range(1, num_of_models + 1)]
# Check if any loopback_mode is set to True
any_loopback_mode = any(getattr(controlnet_args, f'cn_{i}_loopback_mode') for i in range(1, num_of_models + 1))
cn_inputframes_list = [os.path.join(args.outdir, f'controlnet_{i}_inputframes') for i in range(1, num_of_models + 1)]
if not any(os.path.exists(cn_inputframes) for cn_inputframes in cn_inputframes_list) and not any_loopback_mode:
print(f'\033[33mNeither the base nor the masking frames for ControlNet were found. Using the regular pipeline\033[0m')
p.scripts = scripts.scripts_img2img if is_img2img else scripts.scripts_txt2img
def create_cnu_dict(cn_args, prefix, img_np, mask_np, frame_idx, CnSchKeys):
keys = [
"enabled", "module", "model", "weight", "resize_mode", "control_mode", "low_vram", "pixel_perfect",
"processor_res", "threshold_a", "threshold_b", "guidance_start", "guidance_end"
]
cnu = {k: getattr(cn_args, f"{prefix}_{k}") for k in keys}
model_num = int(prefix.split('_')[-1]) # Extract model number from prefix (e.g., "cn_1" -> 1)
if 1 <= model_num <= 5:
# if in loopmode and no init image (img_np, after processing in this case) provided, disable CN unit for the very first frame. Will be enabled in the next frame automatically
if getattr(cn_args, f"cn_{model_num}_loopback_mode") and frame_idx == 0 and img_np is None:
cnu['enabled'] = False
cnu['weight'] = getattr(CnSchKeys, f"cn_{model_num}_weight_schedule_series")[frame_idx]
cnu['guidance_start'] = getattr(CnSchKeys, f"cn_{model_num}_guidance_start_schedule_series")[frame_idx]
cnu['guidance_end'] = getattr(CnSchKeys, f"cn_{model_num}_guidance_end_schedule_series")[frame_idx]
if cnu['enabled']:
debug_print(f"ControlNet {model_num}: weight={cnu['weight']}, guidance_start={cnu['guidance_start']}, guidance_end={cnu['guidance_end']}")
cnu['image'] = {'image': img_np, 'mask': mask_np} if mask_np is not None else img_np
return cnu
masks_np, images_np = zip(*cn_data)
cn_units = [cnet.ControlNetUnit(**create_cnu_dict(controlnet_args, f"cn_{i + 1}", img_np, mask_np, frame_idx, CnSchKeys))
for i, (img_np, mask_np) in enumerate(zip(images_np, masks_np))]
p.script_args = {"enabled": True}
cnet.update_cn_script_in_processing(p, cn_units, is_img2img=is_img2img, is_ui=False)
def process_controlnet_input_frames(args, anim_args, controlnet_args, video_path, mask_path, outdir_suffix, id):
if (video_path or mask_path) and getattr(controlnet_args, f'cn_{id}_enabled'):
frame_path = os.path.join(args.outdir, f'controlnet_{id}_{outdir_suffix}')
os.makedirs(frame_path, exist_ok=True)
accepted_image_extensions = ('.jpg', '.jpeg', '.png', '.bmp')
if video_path and video_path.lower().endswith(accepted_image_extensions):
convert_image(video_path, os.path.join(frame_path, '000000000.jpg'))
print(f"Copied CN Model {id}'s single input image to inputframes folder!")
elif mask_path and mask_path.lower().endswith(accepted_image_extensions):
convert_image(mask_path, os.path.join(frame_path, '000000000.jpg'))
print(f"Copied CN Model {id}'s single input image to inputframes *mask* folder!")
else:
print(f'Unpacking ControlNet {id} {"video mask" if mask_path else "base video"}')
print(f"Exporting Video Frames to {frame_path}...")
vid2frames(
video_path=video_path or mask_path,
video_in_frame_path=frame_path,
n=1 if anim_args.animation_mode != 'Video Input' else anim_args.extract_nth_frame,
overwrite=getattr(controlnet_args, f'cn_{id}_overwrite_frames'),
extract_from_frame=0 if anim_args.animation_mode != 'Video Input' else anim_args.extract_from_frame,
extract_to_frame=(anim_args.max_frames - 1) if anim_args.animation_mode != 'Video Input' else anim_args.extract_to_frame,
numeric_files_output=True
)
print(f"Loading {anim_args.max_frames} input frames from {frame_path} and saving video frames to {args.outdir}")
print(f'ControlNet {id} {"video mask" if mask_path else "base video"} unpacked!')
def unpack_controlnet_vids(args, anim_args, controlnet_args):
# this func gets called from render.py once for an entire animation run -->
# tries to trigger an extraction of CN input frames (regular + masks) from video or image
for i in range(1, num_of_models + 1):
# LoopBack mode is enabled, no need to extract a video or copy an init image
if getattr(controlnet_args, f'cn_{i}_loopback_mode'):
print(f"ControlNet #{i} is in LoopBack mode, skipping video/ image extraction stage.")
continue
vid_path = clean_gradio_path_strings(getattr(controlnet_args, f'cn_{i}_vid_path', None))
mask_path = clean_gradio_path_strings(getattr(controlnet_args, f'cn_{i}_mask_vid_path', None))
if vid_path: # Process base video, if available
process_controlnet_input_frames(args, anim_args, controlnet_args, vid_path, None, 'inputframes', i)
if mask_path: # Process mask video, if available
process_controlnet_input_frames(args, anim_args, controlnet_args, None, mask_path, 'maskframes', i)
|