# Copyright (C) 2023 Deforum LLC
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, version 3 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see
If Deforum crashes due to CN updates, go here and report your problem.
""" def is_controlnet_enabled(controlnet_args): for i in range(1, num_of_models + 1): if getattr(controlnet_args, f'cn_{i}_enabled', False): return True return False def setup_controlnet_ui_raw(): cnet = find_controlnet() cn_models = cnet.get_models() cn_preprocessors = cnet.get_modules() cn_modules = cnet.get_modules_detail() preprocessor_sliders_config = {} for config_name, config_values in cn_modules.items(): sliders = config_values.get('sliders', []) preprocessor_sliders_config[config_name] = sliders model_free_preprocessors = ["reference_only", "reference_adain", "reference_adain+attn"] flag_preprocessor_resolution = "Preprocessor Resolution" def build_sliders(module, pp): grs = [] if module not in preprocessor_sliders_config: grs += [ gr.update(label=flag_preprocessor_resolution, value=512, minimum=64, maximum=2048, step=1, visible=not pp, interactive=not pp), gr.update(visible=False, interactive=False), gr.update(visible=False, interactive=False), gr.update(visible=True) ] else: for slider_config in preprocessor_sliders_config[module]: if isinstance(slider_config, dict): visible = True if slider_config['name'] == flag_preprocessor_resolution: visible = not pp grs.append(gr.update( label=slider_config['name'], value=slider_config['value'], minimum=slider_config['min'], maximum=slider_config['max'], step=slider_config['step'] if 'step' in slider_config else 1, visible=visible, interactive=visible)) else: grs.append(gr.update(visible=False, interactive=False)) while len(grs) < 3: grs.append(gr.update(visible=False, interactive=False)) grs.append(gr.update(visible=True)) if module in model_free_preprocessors: grs += [gr.update(visible=False, value='None'), gr.update(visible=False)] else: grs += [gr.update(visible=True), gr.update(visible=True)] return grs refresh_symbol = '\U0001f504' # 🔄 switch_values_symbol = '\U000021C5' # ⇅ model_dropdowns = [] infotext_fields = [] def create_model_in_tab_ui(cn_id): with gr.Row(): enabled = gr.Checkbox(label="Enable", value=False, interactive=True) pixel_perfect = gr.Checkbox(label="Pixel Perfect", value=False, visible=False, interactive=True) low_vram = gr.Checkbox(label="Low VRAM", value=False, visible=False, interactive=True) overwrite_frames = gr.Checkbox(label='Overwrite input frames', value=True, visible=False, interactive=True) with gr.Row(visible=False) as mod_row: module = gr.Dropdown(cn_preprocessors, label=f"Preprocessor", value="none", interactive=True) model = gr.Dropdown(cn_models, label=f"Model", value="None", interactive=True) refresh_models = ToolButton(value=refresh_symbol) refresh_models.click(refresh_all_models, model, model) with gr.Row(visible=False) as weight_row: weight = gr.Textbox(label="Weight schedule", lines=1, value='0:(1)', interactive=True) with gr.Row(visible=False) as start_cs_row: guidance_start = gr.Textbox(label="Starting Control Step schedule", lines=1, value='0:(0.0)', interactive=True) with gr.Row(visible=False) as end_cs_row: guidance_end = gr.Textbox(label="Ending Control Step schedule", lines=1, value='0:(1.0)', interactive=True) model_dropdowns.append(model) with gr.Column(visible=False) as advanced_column: processor_res = gr.Slider(label="Annotator resolution", value=64, minimum=64, maximum=2048, interactive=False) threshold_a = gr.Slider(label="Threshold A", value=64, minimum=64, maximum=1024, interactive=False) threshold_b = gr.Slider(label="Threshold B", value=64, minimum=64, maximum=1024, interactive=False) with gr.Row(visible=False) as vid_path_row: vid_path = gr.Textbox(value='', label="ControlNet Input Video/ Image Path", interactive=True) with gr.Row(visible=False) as mask_vid_path_row: # invisible temporarily since 26-04-23 until masks are fixed mask_vid_path = gr.Textbox(value='', label="ControlNet Mask Video/ Image Path (*NOT WORKING, kept in UI for CN's devs testing!*)", interactive=True) with gr.Row(visible=False) as control_mode_row: control_mode = gr.Radio(choices=["Balanced", "My prompt is more important", "ControlNet is more important"], value="Balanced", label="Control Mode", interactive=True) with gr.Row(visible=False) as env_row: resize_mode = gr.Radio(choices=["Outer Fit (Shrink to Fit)", "Inner Fit (Scale to Fit)", "Just Resize"], value="Inner Fit (Scale to Fit)", label="Resize Mode", interactive=True) with gr.Row(visible=False) as control_loopback_row: loopback_mode = gr.Checkbox(label="LoopBack mode", value=False, interactive=True) hide_output_list = [pixel_perfect, low_vram, mod_row, module, weight_row, start_cs_row, end_cs_row, env_row, overwrite_frames, vid_path_row, control_mode_row, mask_vid_path_row, control_loopback_row] # add mask_vid_path_row when masks are working again for cn_output in hide_output_list: enabled.change(fn=hide_ui_by_cn_status, inputs=enabled, outputs=cn_output) module.change(build_sliders, inputs=[module, pixel_perfect], outputs=[processor_res, threshold_a, threshold_b, advanced_column, model, refresh_models]) # hide vid/image input fields loopback_outs = [vid_path_row, mask_vid_path_row] for loopback_output in loopback_outs: loopback_mode.change(fn=hide_file_textboxes, inputs=loopback_mode, outputs=loopback_output) # handle pixel perfect ui changes pixel_perfect.change(build_sliders, inputs=[module, pixel_perfect], outputs=[processor_res, threshold_a, threshold_b, advanced_column, model, refresh_models]) infotext_fields.extend([ (module, f"ControlNet Preprocessor"), (model, f"ControlNet Model"), (weight, f"ControlNet Weight"), ]) return {key: value for key, value in locals().items() if key in [ "enabled", "pixel_perfect", "low_vram", "module", "model", "weight", "guidance_start", "guidance_end", "processor_res", "threshold_a", "threshold_b", "resize_mode", "control_mode", "overwrite_frames", "vid_path", "mask_vid_path", "loopback_mode" ]} def refresh_all_models(*inputs): cn_models = cnet.get_models(update=True) dd = inputs[0] selected = dd if dd in cn_models else "None" return gr.Dropdown.update(value=selected, choices=cn_models) with gr.TabItem('ControlNet'): gr.HTML(controlnet_infotext()) with gr.Tabs(): model_params = {} for i in range(1, num_of_models + 1): with gr.Tab(f"CN Model {i}"): model_params[i] = create_model_in_tab_ui(i) for key, value in model_params[i].items(): locals()[f"cn_{i}_{key}"] = value return locals() def setup_controlnet_ui(): if not find_controlnet(): gr.HTML("""ControlNet not found. Please install it :)""", elem_id='controlnet_not_found_html_msg') return {} try: return setup_controlnet_ui_raw() except Exception as e: print(f"'ControlNet UI setup failed with error: '{e}'!") gr.HTML(f""" Failed to setup ControlNet UI, check the reason in your commandline log. Please, downgrade your CN extension to c9340671d6d59e5a79fc404f78f747f969f87374 or report the problem here. """, elem_id='controlnet_not_found_html_msg') return {} def controlnet_component_names(): if not find_controlnet(): return [] return [f'cn_{i}_{component}' for i in range(1, num_of_models + 1) for component in [ 'overwrite_frames', 'vid_path', 'mask_vid_path', 'enabled', 'low_vram', 'pixel_perfect', 'module', 'model', 'weight', 'guidance_start', 'guidance_end', 'processor_res', 'threshold_a', 'threshold_b', 'resize_mode', 'control_mode', 'loopback_mode' ]] def process_with_controlnet(p, args, anim_args, controlnet_args, root, parseq_adapter, is_img2img=True, frame_idx=0): CnSchKeys = ControlNetKeys(anim_args, controlnet_args) if not parseq_adapter.use_parseq else parseq_adapter.cn_keys def read_cn_data(cn_idx): cn_mask_np, cn_image_np = None, None # Loopback mode ENABLED: if getattr(controlnet_args, f'cn_{cn_idx}_loopback_mode'): # On very first frame, check if use init enabled, and if init image is provided if frame_idx == 0 and args.use_init and (args.init_image is not None or args.init_image_box is not None): cn_image_np = load_image(args.init_image, args.init_image_box) # convert to uint8 for compatibility with CN cn_image_np = np.array(cn_image_np).astype('uint8') # Not first frame, use previous img (init_sample) elif frame_idx > 0 and root.init_sample: cn_image_np = np.array(root.init_sample).astype('uint8') else: # loopback mode is DISABLED cn_inputframes = os.path.join(args.outdir, f'controlnet_{cn_idx}_inputframes') # set input frames folder path if os.path.exists(cn_inputframes): if count_files_in_folder(cn_inputframes) == 1: cn_frame_path = os.path.join(cn_inputframes, "000000000.jpg") print(f'Reading ControlNet *static* base frame at {cn_frame_path}') else: cn_frame_path = os.path.join(cn_inputframes, f"{frame_idx:09}.jpg") print(f'Reading ControlNet {cn_idx} base frame #{frame_idx} at {cn_frame_path}') if os.path.exists(cn_frame_path): cn_image_np = np.array(Image.open(cn_frame_path).convert("RGB")).astype('uint8') cn_maskframes = os.path.join(args.outdir, f'controlnet_{cn_idx}_maskframes') # set mask frames folder path if os.path.exists(cn_maskframes): if count_files_in_folder(cn_maskframes) == 1: cn_mask_frame_path = os.path.join(cn_inputframes, "000000000.jpg") print(f'Reading ControlNet *static* mask frame at {cn_mask_frame_path}') else: cn_mask_frame_path = os.path.join(args.outdir, f'controlnet_{cn_idx}_maskframes', f"{frame_idx:09}.jpg") print(f'Reading ControlNet {cn_idx} mask frame #{frame_idx} at {cn_mask_frame_path}') if os.path.exists(cn_mask_frame_path): cn_mask_np = np.array(Image.open(cn_mask_frame_path).convert("RGB")).astype('uint8') return cn_mask_np, cn_image_np cnet = find_controlnet() cn_data = [read_cn_data(i) for i in range(1, num_of_models + 1)] # Check if any loopback_mode is set to True any_loopback_mode = any(getattr(controlnet_args, f'cn_{i}_loopback_mode') for i in range(1, num_of_models + 1)) cn_inputframes_list = [os.path.join(args.outdir, f'controlnet_{i}_inputframes') for i in range(1, num_of_models + 1)] if not any(os.path.exists(cn_inputframes) for cn_inputframes in cn_inputframes_list) and not any_loopback_mode: print(f'\033[33mNeither the base nor the masking frames for ControlNet were found. Using the regular pipeline\033[0m') p.scripts = scripts.scripts_img2img if is_img2img else scripts.scripts_txt2img def create_cnu_dict(cn_args, prefix, img_np, mask_np, frame_idx, CnSchKeys): keys = [ "enabled", "module", "model", "weight", "resize_mode", "control_mode", "low_vram", "pixel_perfect", "processor_res", "threshold_a", "threshold_b", "guidance_start", "guidance_end" ] cnu = {k: getattr(cn_args, f"{prefix}_{k}") for k in keys} model_num = int(prefix.split('_')[-1]) # Extract model number from prefix (e.g., "cn_1" -> 1) if 1 <= model_num <= 5: # if in loopmode and no init image (img_np, after processing in this case) provided, disable CN unit for the very first frame. Will be enabled in the next frame automatically if getattr(cn_args, f"cn_{model_num}_loopback_mode") and frame_idx == 0 and img_np is None: cnu['enabled'] = False cnu['weight'] = getattr(CnSchKeys, f"cn_{model_num}_weight_schedule_series")[frame_idx] cnu['guidance_start'] = getattr(CnSchKeys, f"cn_{model_num}_guidance_start_schedule_series")[frame_idx] cnu['guidance_end'] = getattr(CnSchKeys, f"cn_{model_num}_guidance_end_schedule_series")[frame_idx] if cnu['enabled']: debug_print(f"ControlNet {model_num}: weight={cnu['weight']}, guidance_start={cnu['guidance_start']}, guidance_end={cnu['guidance_end']}") cnu['image'] = {'image': img_np, 'mask': mask_np} if mask_np is not None else img_np return cnu masks_np, images_np = zip(*cn_data) cn_units = [cnet.ControlNetUnit(**create_cnu_dict(controlnet_args, f"cn_{i + 1}", img_np, mask_np, frame_idx, CnSchKeys)) for i, (img_np, mask_np) in enumerate(zip(images_np, masks_np))] p.script_args = {"enabled": True} cnet.update_cn_script_in_processing(p, cn_units, is_img2img=is_img2img, is_ui=False) def process_controlnet_input_frames(args, anim_args, controlnet_args, video_path, mask_path, outdir_suffix, id): if (video_path or mask_path) and getattr(controlnet_args, f'cn_{id}_enabled'): frame_path = os.path.join(args.outdir, f'controlnet_{id}_{outdir_suffix}') os.makedirs(frame_path, exist_ok=True) accepted_image_extensions = ('.jpg', '.jpeg', '.png', '.bmp') if video_path and video_path.lower().endswith(accepted_image_extensions): convert_image(video_path, os.path.join(frame_path, '000000000.jpg')) print(f"Copied CN Model {id}'s single input image to inputframes folder!") elif mask_path and mask_path.lower().endswith(accepted_image_extensions): convert_image(mask_path, os.path.join(frame_path, '000000000.jpg')) print(f"Copied CN Model {id}'s single input image to inputframes *mask* folder!") else: print(f'Unpacking ControlNet {id} {"video mask" if mask_path else "base video"}') print(f"Exporting Video Frames to {frame_path}...") vid2frames( video_path=video_path or mask_path, video_in_frame_path=frame_path, n=1 if anim_args.animation_mode != 'Video Input' else anim_args.extract_nth_frame, overwrite=getattr(controlnet_args, f'cn_{id}_overwrite_frames'), extract_from_frame=0 if anim_args.animation_mode != 'Video Input' else anim_args.extract_from_frame, extract_to_frame=(anim_args.max_frames - 1) if anim_args.animation_mode != 'Video Input' else anim_args.extract_to_frame, numeric_files_output=True ) print(f"Loading {anim_args.max_frames} input frames from {frame_path} and saving video frames to {args.outdir}") print(f'ControlNet {id} {"video mask" if mask_path else "base video"} unpacked!') def unpack_controlnet_vids(args, anim_args, controlnet_args): # this func gets called from render.py once for an entire animation run --> # tries to trigger an extraction of CN input frames (regular + masks) from video or image for i in range(1, num_of_models + 1): # LoopBack mode is enabled, no need to extract a video or copy an init image if getattr(controlnet_args, f'cn_{i}_loopback_mode'): print(f"ControlNet #{i} is in LoopBack mode, skipping video/ image extraction stage.") continue vid_path = clean_gradio_path_strings(getattr(controlnet_args, f'cn_{i}_vid_path', None)) mask_path = clean_gradio_path_strings(getattr(controlnet_args, f'cn_{i}_mask_vid_path', None)) if vid_path: # Process base video, if available process_controlnet_input_frames(args, anim_args, controlnet_args, vid_path, None, 'inputframes', i) if mask_path: # Process mask video, if available process_controlnet_input_frames(args, anim_args, controlnet_args, None, mask_path, 'maskframes', i)