File size: 12,649 Bytes
81f4d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright (C) 2023 Deforum LLC
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, version 3 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.

# Contact the authors: https://deforum.github.io/

# TODO: deduplicate upscaling/interp/vid2depth code

import os, gc
import numpy as np
import cv2
from pathlib import Path
from tqdm import tqdm
from PIL import Image, ImageOps, ImageChops
from modules.shared import cmd_opts, device as sh_device
from modules import devices
import shutil
from .frame_interpolation import clean_folder_name
from rife.inference_video import duplicate_pngs_from_folder
from .video_audio_utilities import get_quick_vid_info, vid2frames, ffmpeg_stitch_video

def process_depth_vid_upload_logic(file, mode, thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur, midas_weight_vid2depth, vid_file_name, keep_imgs, f_location, f_crf, f_preset, f_models_path):
    print("got a request to *vid2depth* an existing video.")

    in_vid_fps, _, _ = get_quick_vid_info(file.name)
    folder_name = clean_folder_name(Path(vid_file_name).stem)
    outdir_no_tmp = os.path.join(os.getcwd(), 'outputs', 'frame-depth', folder_name)
    i = 1
    while os.path.exists(outdir_no_tmp):
        outdir_no_tmp = os.path.join(os.getcwd(), 'outputs', 'frame-depth', folder_name + '_' + str(i))
        i += 1

    outdir = os.path.join(outdir_no_tmp, 'tmp_input_frames')
    os.makedirs(outdir, exist_ok=True)
    
    vid2frames(video_path=file.name, video_in_frame_path=outdir, overwrite=True, extract_from_frame=0, extract_to_frame=-1, numeric_files_output=True, out_img_format='png')
    
    process_video_depth(mode, thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur, midas_weight_vid2depth, orig_vid_fps=in_vid_fps, real_audio_track=file.name, raw_output_imgs_path=outdir, img_batch_id=None, ffmpeg_location=f_location, ffmpeg_crf=f_crf, ffmpeg_preset=f_preset, f_models_path=f_models_path, keep_depth_imgs=keep_imgs, orig_vid_name=folder_name)

def process_video_depth(mode, thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur, midas_weight_vid2depth, orig_vid_fps, real_audio_track, raw_output_imgs_path, img_batch_id, ffmpeg_location, ffmpeg_crf, ffmpeg_preset, f_models_path, keep_depth_imgs, orig_vid_name):
    devices.torch_gc()

    print("Vid2depth progress (it's OK if it finishes before 100%):")

    upscaled_path = os.path.join(raw_output_imgs_path, 'depth_frames')
    if orig_vid_name is not None: # upscaling a video (deforum or unrelated)
        custom_upscale_path = "{}_{}".format(upscaled_path, orig_vid_name)
    else: # upscaling after a deforum run:
        custom_upscale_path = "{}_{}".format(upscaled_path, img_batch_id)
    
    temp_convert_raw_png_path = os.path.join(raw_output_imgs_path, "tmp_depth_folder")
    duplicate_pngs_from_folder(raw_output_imgs_path, temp_convert_raw_png_path, img_batch_id, orig_vid_name)

    videogen = []
    for f in os.listdir(temp_convert_raw_png_path):
        # double check for old _depth_ files, not really needed probably but keeping it for now
        if '_depth_' not in f:
            videogen.append(f)
            
    videogen.sort(key= lambda x:int(x.split('.')[0]))
    vid_out = None

    if not os.path.exists(custom_upscale_path):
        os.mkdir(custom_upscale_path)
    
    # Loading the chosen model
    if 'Mixed' in mode:
        model = (load_depth_model(f_models_path, midas_weight_vid2depth), load_anime_model())
    elif 'Depth' in mode:
        model = load_depth_model(f_models_path, midas_weight_vid2depth)
    elif 'Anime' in mode:
        model = load_anime_model()
    else:
        model = None

    # Upscaling is a slow and demanding operation, so we don't need as much parallelization here
    for i in tqdm(range(len(videogen)), desc="Vid2depth"):
        lastframe = videogen[i]
        img_path = os.path.join(temp_convert_raw_png_path, lastframe)
        image = process_frame(model, Image.open(img_path).convert("RGB"), mode, thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur, midas_weight_vid2depth)
        filename = '{}/{:0>9d}.png'.format(custom_upscale_path, i)
        image.save(filename)
    
    # Cleaning up and freeing the memory before stitching
    model = None
    gc.collect()
    devices.torch_gc()

    shutil.rmtree(temp_convert_raw_png_path)
    # stitch video from upscaled frames, and add audio if needed
    try:
        print (f"*Passing depth frames to ffmpeg...*")
        vid_out_path = stitch_video(img_batch_id, orig_vid_fps, custom_upscale_path, real_audio_track, ffmpeg_location, mode, thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur, midas_weight_vid2depth, ffmpeg_crf, ffmpeg_preset, keep_depth_imgs, orig_vid_name)
        # remove folder with raw (non-upscaled) vid input frames in case of input VID and not PNGs
        if orig_vid_name is not None:
            shutil.rmtree(raw_output_imgs_path)
    except Exception as e:
        print(f'Video stitching gone wrong. *Vid2depth frames were saved to HD as backup!*. Actual error: {e}')

    gc.collect()
    devices.torch_gc()

def process_frame(model, image, mode, thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur, midas_weight_vid2depth):
    # Get grayscale foreground map
    if 'None' in mode:
        depth = process_depth(image, 'None', thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur)
    elif not 'Mixed' in mode:
        depth = process_frame_depth(model, np.array(image), midas_weight_vid2depth) if 'Depth' in mode else process_frame_anime(model, np.array(image))
        depth = process_depth(depth, mode, thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur)
    else:
        if thresholding == 'None':
            raise "Mixed mode doesn't work with no thresholding!"
        depth_depth = process_frame_depth(model[0], np.array(image), midas_weight_vid2depth)
        depth_depth = process_depth(depth_depth, 'Depth', thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur)
        anime_depth = process_frame_anime(model[1], np.array(image))
        anime_depth = process_depth(anime_depth, 'Anime', 'Simple', 32, 255, adapt_block_size, adapt_c, invert, end_blur)
        depth = ImageChops.logical_or(depth_depth.convert('1'), anime_depth.convert('1'))

    return depth

def process_depth(depth, mode, thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur):
    depth = depth.convert('L')
    # Depth mode need inverting whereas Anime mode doesn't
    # (invert and 'Depth' in mode) or (not invert and not 'Depth' in mode)
    if (invert and 'None' in mode) or (invert is ('Depth' in mode)):
        depth = ImageOps.invert(depth)
    
    depth = np.array(depth)
    
    # Apply thresholding
    if thresholding == 'Simple':
        _, depth = cv2.threshold(depth, threshold_value, threshold_value_max, cv2.THRESH_BINARY)
    elif thresholding == 'Simple (Auto-value)':
        _, depth = cv2.threshold(depth, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    elif thresholding == 'Adaptive (Mean)':
        depth = cv2.adaptiveThreshold(depth, threshold_value_max, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, int(adapt_block_size), adapt_c)
    elif thresholding == 'Adaptive (Gaussian)':
        depth = cv2.adaptiveThreshold(depth, threshold_value_max, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, int(adapt_block_size), adapt_c)

    # Apply slight blur in the end to smoothen the edges after initial thresholding
    if end_blur > 0:
        depth = cv2.GaussianBlur(depth, (5, 5), end_blur)

    if thresholding == 'None' or end_blur == 0:
        # Return a graymap
        return Image.fromarray(depth).convert('L')
    else:
        # This commits thresholding again, but on the already processed image, so we don't need to set it up as much
        return Image.fromarray(cv2.threshold(depth, 127, 255, cv2.THRESH_BINARY)[1]).convert('L')
    
def stitch_video(img_batch_id, fps, img_folder_path, audio_path, ffmpeg_location, mode, thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur, midas_weight_vid2depth, f_crf, f_preset, keep_imgs, orig_vid_name):        
    parent_folder = os.path.dirname(img_folder_path)
    grandparent_folder = os.path.dirname(parent_folder)
    mode = str(mode).replace('\\', '_').replace(' ', '_').replace('(', '_').replace(')', '_')
    mp4_path = os.path.join(grandparent_folder, str(orig_vid_name if orig_vid_name is not None else img_batch_id) +'_depth_'+f"{thresholding}")
    
    mp4_path = mp4_path + '.mp4'

    t = os.path.join(img_folder_path, "%09d.png")
    add_soundtrack = 'None'
    if not audio_path is None:
        add_soundtrack = 'File'
        
    exception_raised = False
    try:
        ffmpeg_stitch_video(ffmpeg_location=ffmpeg_location, fps=fps, outmp4_path=mp4_path, stitch_from_frame=0, stitch_to_frame=1000000, imgs_path=t, add_soundtrack=add_soundtrack, audio_path=audio_path, crf=f_crf, preset=f_preset)
    except Exception as e:
        exception_raised = True
        print(f"An error occurred while stitching the video: {e}")

    if not exception_raised and not keep_imgs:
        shutil.rmtree(img_folder_path)

    if (keep_imgs and orig_vid_name is not None) or (orig_vid_name is not None and exception_raised is True):
        shutil.move(img_folder_path, grandparent_folder)

    return mp4_path

# Midas/Adabins Depth mode with the usual workflow
def load_depth_model(models_path, midas_weight_vid2depth):
    from .depth import DepthModel
    device = ('cpu' if cmd_opts.lowvram or cmd_opts.medvram else sh_device)
    keep_in_vram = False # TODO: Future  - handle this too?
    print('Loading Depth Model')
    depth_model = DepthModel(models_path, device, not cmd_opts.no_half, keep_in_vram=keep_in_vram)
    return depth_model

# Anime Remove Background by skytnt and onnx model
# https://huggingface.co/spaces/skytnt/anime-remove-background/blob/main/app.py
def load_anime_model():
    # Installing its deps on demand
    print('Checking ARB dependencies')
    from launch import is_installed, run_pip
    libs = ["onnx", "onnxruntime-gpu", "huggingface_hub"]
    for lib in libs:
        if not is_installed(lib):
            run_pip(f"install {lib}", lib)
    
    try:
        import onnxruntime as rt
        import huggingface_hub
    except Exception as e:
        raise f"onnxruntime has not been installed correctly! Anime Remove Background mode is unable to function. The actual exception is: {e}. Note, that you'll need internet connection for the first run!"
    
    providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
    model_path = huggingface_hub.hf_hub_download("skytnt/anime-seg", "isnetis.onnx")
    return rt.InferenceSession(model_path, providers=providers)
    
def get_mask(rmbg_model, img, s=1024):
    img = (img / 255).astype(np.float32)
    h, w = h0, w0 = img.shape[:-1]
    h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s)
    ph, pw = s - h, s - w
    img_input = np.zeros([s, s, 3], dtype=np.float32)
    img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h))
    img_input = np.transpose(img_input, (2, 0, 1))
    img_input = img_input[np.newaxis, :]
    mask = rmbg_model.run(None, {'img': img_input})[0][0]
    mask = np.transpose(mask, (1, 2, 0))
    mask = mask[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w]
    mask = cv2.resize(mask, (w0, h0))
    # TODO: pass in batches
    mask = (mask * 255).astype(np.uint8)
    return mask

def process_frame_depth(depth_model, image, midas_weight):
    opencv_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    depth = depth_model.predict(opencv_image, midas_weight, not cmd_opts.no_half)
    return depth_model.to_image(depth)

def process_frame_anime(model, image):
    return Image.fromarray(get_mask(model, image), 'L')