File size: 12,649 Bytes
81f4d3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# Copyright (C) 2023 Deforum LLC
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, version 3 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# Contact the authors: https://deforum.github.io/
# TODO: deduplicate upscaling/interp/vid2depth code
import os, gc
import numpy as np
import cv2
from pathlib import Path
from tqdm import tqdm
from PIL import Image, ImageOps, ImageChops
from modules.shared import cmd_opts, device as sh_device
from modules import devices
import shutil
from .frame_interpolation import clean_folder_name
from rife.inference_video import duplicate_pngs_from_folder
from .video_audio_utilities import get_quick_vid_info, vid2frames, ffmpeg_stitch_video
def process_depth_vid_upload_logic(file, mode, thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur, midas_weight_vid2depth, vid_file_name, keep_imgs, f_location, f_crf, f_preset, f_models_path):
print("got a request to *vid2depth* an existing video.")
in_vid_fps, _, _ = get_quick_vid_info(file.name)
folder_name = clean_folder_name(Path(vid_file_name).stem)
outdir_no_tmp = os.path.join(os.getcwd(), 'outputs', 'frame-depth', folder_name)
i = 1
while os.path.exists(outdir_no_tmp):
outdir_no_tmp = os.path.join(os.getcwd(), 'outputs', 'frame-depth', folder_name + '_' + str(i))
i += 1
outdir = os.path.join(outdir_no_tmp, 'tmp_input_frames')
os.makedirs(outdir, exist_ok=True)
vid2frames(video_path=file.name, video_in_frame_path=outdir, overwrite=True, extract_from_frame=0, extract_to_frame=-1, numeric_files_output=True, out_img_format='png')
process_video_depth(mode, thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur, midas_weight_vid2depth, orig_vid_fps=in_vid_fps, real_audio_track=file.name, raw_output_imgs_path=outdir, img_batch_id=None, ffmpeg_location=f_location, ffmpeg_crf=f_crf, ffmpeg_preset=f_preset, f_models_path=f_models_path, keep_depth_imgs=keep_imgs, orig_vid_name=folder_name)
def process_video_depth(mode, thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur, midas_weight_vid2depth, orig_vid_fps, real_audio_track, raw_output_imgs_path, img_batch_id, ffmpeg_location, ffmpeg_crf, ffmpeg_preset, f_models_path, keep_depth_imgs, orig_vid_name):
devices.torch_gc()
print("Vid2depth progress (it's OK if it finishes before 100%):")
upscaled_path = os.path.join(raw_output_imgs_path, 'depth_frames')
if orig_vid_name is not None: # upscaling a video (deforum or unrelated)
custom_upscale_path = "{}_{}".format(upscaled_path, orig_vid_name)
else: # upscaling after a deforum run:
custom_upscale_path = "{}_{}".format(upscaled_path, img_batch_id)
temp_convert_raw_png_path = os.path.join(raw_output_imgs_path, "tmp_depth_folder")
duplicate_pngs_from_folder(raw_output_imgs_path, temp_convert_raw_png_path, img_batch_id, orig_vid_name)
videogen = []
for f in os.listdir(temp_convert_raw_png_path):
# double check for old _depth_ files, not really needed probably but keeping it for now
if '_depth_' not in f:
videogen.append(f)
videogen.sort(key= lambda x:int(x.split('.')[0]))
vid_out = None
if not os.path.exists(custom_upscale_path):
os.mkdir(custom_upscale_path)
# Loading the chosen model
if 'Mixed' in mode:
model = (load_depth_model(f_models_path, midas_weight_vid2depth), load_anime_model())
elif 'Depth' in mode:
model = load_depth_model(f_models_path, midas_weight_vid2depth)
elif 'Anime' in mode:
model = load_anime_model()
else:
model = None
# Upscaling is a slow and demanding operation, so we don't need as much parallelization here
for i in tqdm(range(len(videogen)), desc="Vid2depth"):
lastframe = videogen[i]
img_path = os.path.join(temp_convert_raw_png_path, lastframe)
image = process_frame(model, Image.open(img_path).convert("RGB"), mode, thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur, midas_weight_vid2depth)
filename = '{}/{:0>9d}.png'.format(custom_upscale_path, i)
image.save(filename)
# Cleaning up and freeing the memory before stitching
model = None
gc.collect()
devices.torch_gc()
shutil.rmtree(temp_convert_raw_png_path)
# stitch video from upscaled frames, and add audio if needed
try:
print (f"*Passing depth frames to ffmpeg...*")
vid_out_path = stitch_video(img_batch_id, orig_vid_fps, custom_upscale_path, real_audio_track, ffmpeg_location, mode, thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur, midas_weight_vid2depth, ffmpeg_crf, ffmpeg_preset, keep_depth_imgs, orig_vid_name)
# remove folder with raw (non-upscaled) vid input frames in case of input VID and not PNGs
if orig_vid_name is not None:
shutil.rmtree(raw_output_imgs_path)
except Exception as e:
print(f'Video stitching gone wrong. *Vid2depth frames were saved to HD as backup!*. Actual error: {e}')
gc.collect()
devices.torch_gc()
def process_frame(model, image, mode, thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur, midas_weight_vid2depth):
# Get grayscale foreground map
if 'None' in mode:
depth = process_depth(image, 'None', thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur)
elif not 'Mixed' in mode:
depth = process_frame_depth(model, np.array(image), midas_weight_vid2depth) if 'Depth' in mode else process_frame_anime(model, np.array(image))
depth = process_depth(depth, mode, thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur)
else:
if thresholding == 'None':
raise "Mixed mode doesn't work with no thresholding!"
depth_depth = process_frame_depth(model[0], np.array(image), midas_weight_vid2depth)
depth_depth = process_depth(depth_depth, 'Depth', thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur)
anime_depth = process_frame_anime(model[1], np.array(image))
anime_depth = process_depth(anime_depth, 'Anime', 'Simple', 32, 255, adapt_block_size, adapt_c, invert, end_blur)
depth = ImageChops.logical_or(depth_depth.convert('1'), anime_depth.convert('1'))
return depth
def process_depth(depth, mode, thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur):
depth = depth.convert('L')
# Depth mode need inverting whereas Anime mode doesn't
# (invert and 'Depth' in mode) or (not invert and not 'Depth' in mode)
if (invert and 'None' in mode) or (invert is ('Depth' in mode)):
depth = ImageOps.invert(depth)
depth = np.array(depth)
# Apply thresholding
if thresholding == 'Simple':
_, depth = cv2.threshold(depth, threshold_value, threshold_value_max, cv2.THRESH_BINARY)
elif thresholding == 'Simple (Auto-value)':
_, depth = cv2.threshold(depth, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
elif thresholding == 'Adaptive (Mean)':
depth = cv2.adaptiveThreshold(depth, threshold_value_max, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, int(adapt_block_size), adapt_c)
elif thresholding == 'Adaptive (Gaussian)':
depth = cv2.adaptiveThreshold(depth, threshold_value_max, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, int(adapt_block_size), adapt_c)
# Apply slight blur in the end to smoothen the edges after initial thresholding
if end_blur > 0:
depth = cv2.GaussianBlur(depth, (5, 5), end_blur)
if thresholding == 'None' or end_blur == 0:
# Return a graymap
return Image.fromarray(depth).convert('L')
else:
# This commits thresholding again, but on the already processed image, so we don't need to set it up as much
return Image.fromarray(cv2.threshold(depth, 127, 255, cv2.THRESH_BINARY)[1]).convert('L')
def stitch_video(img_batch_id, fps, img_folder_path, audio_path, ffmpeg_location, mode, thresholding, threshold_value, threshold_value_max, adapt_block_size, adapt_c, invert, end_blur, midas_weight_vid2depth, f_crf, f_preset, keep_imgs, orig_vid_name):
parent_folder = os.path.dirname(img_folder_path)
grandparent_folder = os.path.dirname(parent_folder)
mode = str(mode).replace('\\', '_').replace(' ', '_').replace('(', '_').replace(')', '_')
mp4_path = os.path.join(grandparent_folder, str(orig_vid_name if orig_vid_name is not None else img_batch_id) +'_depth_'+f"{thresholding}")
mp4_path = mp4_path + '.mp4'
t = os.path.join(img_folder_path, "%09d.png")
add_soundtrack = 'None'
if not audio_path is None:
add_soundtrack = 'File'
exception_raised = False
try:
ffmpeg_stitch_video(ffmpeg_location=ffmpeg_location, fps=fps, outmp4_path=mp4_path, stitch_from_frame=0, stitch_to_frame=1000000, imgs_path=t, add_soundtrack=add_soundtrack, audio_path=audio_path, crf=f_crf, preset=f_preset)
except Exception as e:
exception_raised = True
print(f"An error occurred while stitching the video: {e}")
if not exception_raised and not keep_imgs:
shutil.rmtree(img_folder_path)
if (keep_imgs and orig_vid_name is not None) or (orig_vid_name is not None and exception_raised is True):
shutil.move(img_folder_path, grandparent_folder)
return mp4_path
# Midas/Adabins Depth mode with the usual workflow
def load_depth_model(models_path, midas_weight_vid2depth):
from .depth import DepthModel
device = ('cpu' if cmd_opts.lowvram or cmd_opts.medvram else sh_device)
keep_in_vram = False # TODO: Future - handle this too?
print('Loading Depth Model')
depth_model = DepthModel(models_path, device, not cmd_opts.no_half, keep_in_vram=keep_in_vram)
return depth_model
# Anime Remove Background by skytnt and onnx model
# https://huggingface.co/spaces/skytnt/anime-remove-background/blob/main/app.py
def load_anime_model():
# Installing its deps on demand
print('Checking ARB dependencies')
from launch import is_installed, run_pip
libs = ["onnx", "onnxruntime-gpu", "huggingface_hub"]
for lib in libs:
if not is_installed(lib):
run_pip(f"install {lib}", lib)
try:
import onnxruntime as rt
import huggingface_hub
except Exception as e:
raise f"onnxruntime has not been installed correctly! Anime Remove Background mode is unable to function. The actual exception is: {e}. Note, that you'll need internet connection for the first run!"
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
model_path = huggingface_hub.hf_hub_download("skytnt/anime-seg", "isnetis.onnx")
return rt.InferenceSession(model_path, providers=providers)
def get_mask(rmbg_model, img, s=1024):
img = (img / 255).astype(np.float32)
h, w = h0, w0 = img.shape[:-1]
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s)
ph, pw = s - h, s - w
img_input = np.zeros([s, s, 3], dtype=np.float32)
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h))
img_input = np.transpose(img_input, (2, 0, 1))
img_input = img_input[np.newaxis, :]
mask = rmbg_model.run(None, {'img': img_input})[0][0]
mask = np.transpose(mask, (1, 2, 0))
mask = mask[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w]
mask = cv2.resize(mask, (w0, h0))
# TODO: pass in batches
mask = (mask * 255).astype(np.uint8)
return mask
def process_frame_depth(depth_model, image, midas_weight):
opencv_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
depth = depth_model.predict(opencv_image, midas_weight, not cmd_opts.no_half)
return depth_model.to_image(depth)
def process_frame_anime(model, image):
return Image.fromarray(get_mask(model, image), 'L')
|