File size: 11,088 Bytes
81f4d3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# Copyright (C) 2023 Deforum LLC
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, version 3 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# Contact the authors: https://deforum.github.io/
import os
from pathlib import Path
import shutil
import time
import subprocess
from .frame_interpolation import clean_folder_name
from .general_utils import duplicate_pngs_from_folder, checksum
from .video_audio_utilities import vid2frames, ffmpeg_stitch_video, extract_number, media_file_has_audio
from basicsr.utils.download_util import load_file_from_url
from .rich import console
from modules.shared import opts
# NCNN Upscale section START
def process_ncnn_upscale_vid_upload_logic(vid_path, in_vid_fps, in_vid_res, out_vid_res, models_path, upscale_model, upscale_factor, keep_imgs, f_location, f_crf, f_preset, current_user_os):
print(f"Got a request to *upscale* a video using {upscale_model} at {upscale_factor}")
folder_name = clean_folder_name(Path(vid_path.orig_name).stem)
outdir = opts.outdir_samples or os.path.join(os.getcwd(), 'outputs')
outdir_no_tmp = outdir + f'/frame-upscaling/{folder_name}'
i = 1
while os.path.exists(outdir_no_tmp):
outdir_no_tmp = f"{outdir}/frame-upscaling/{folder_name}_{i}"
i += 1
outdir = os.path.join(outdir_no_tmp, 'tmp_input_frames')
os.makedirs(outdir, exist_ok=True)
vid2frames(video_path=vid_path.name, video_in_frame_path=outdir, overwrite=True, extract_from_frame=0, extract_to_frame=-1, numeric_files_output=True, out_img_format='png')
process_ncnn_video_upscaling(vid_path, outdir, in_vid_fps, in_vid_res, out_vid_res, models_path, upscale_model, upscale_factor, keep_imgs, f_location, f_crf, f_preset, current_user_os)
def process_ncnn_video_upscaling(vid_path, outdir, in_vid_fps, in_vid_res, out_vid_res, models_path, upscale_model, upscale_factor, keep_imgs, f_location, f_crf, f_preset, current_user_os):
# get clean number from 'x2, x3' etc
clean_num_r_up_factor = extract_number(upscale_factor)
# set paths
realesrgan_ncnn_location = os.path.join(models_path, 'realesrgan_ncnn', 'realesrgan-ncnn-vulkan' + ('.exe' if current_user_os == 'Windows' else ''))
upscaled_folder_path = os.path.join(os.path.dirname(outdir), 'Upscaled_frames')
# create folder for upscaled imgs to live in. this folder will stay alive if keep_imgs=True, otherwise get deleted at the end
os.makedirs(upscaled_folder_path, exist_ok=True)
# originally we used vid_path.orig_name but gradio broke it in v 3.23 so we use a hack on vid_path.name, which might not hold forever. 2023-04-05
out_upscaled_mp4_path = os.path.join(os.path.dirname(outdir), f"{os.path.basename(vid_path.name)}_Upscaled_{upscale_factor}.mp4")
# download upscaling model if needed
check_and_download_realesrgan_ncnn(models_path, current_user_os)
# set cmd command
cmd = [realesrgan_ncnn_location, '-i', outdir, '-o', upscaled_folder_path, '-s', str(clean_num_r_up_factor), '-n', upscale_model]
# msg to print - need it to hide that text later on (!)
msg_to_print = f"Upscaling raw PNGs using {upscale_model} at {upscale_factor}..."
# blink the msg in the cli until action is done
console.print(msg_to_print, style="blink yellow", end="")
start_time = time.time()
# make call to ncnn upscaling executble
process = subprocess.run(cmd, capture_output=True, check=True, text=True)
print("\r" + " " * len(msg_to_print), end="", flush=True)
print(f"\r{msg_to_print}", flush=True)
print(f"\rUpscaling \033[0;32mdone\033[0m in {time.time() - start_time:.2f} seconds!", flush=True)
# set custom path for ffmpeg func below
upscaled_imgs_path_for_ffmpeg = os.path.join(upscaled_folder_path, "%09d.png")
add_soundtrack = 'None'
# don't pass add_soundtrack to ffmpeg if orig video doesn't contain any audio, so we won't get a message saying audio couldn't be added :)
if media_file_has_audio(vid_path.name, f_location):
add_soundtrack = 'File'
# stitch video from upscaled pngs
ffmpeg_stitch_video(ffmpeg_location=f_location, fps=in_vid_fps, outmp4_path=out_upscaled_mp4_path, stitch_from_frame=0, stitch_to_frame=-1, imgs_path=upscaled_imgs_path_for_ffmpeg, add_soundtrack=add_soundtrack, audio_path=vid_path.name, crf=f_crf, preset=f_preset)
# delete the raw video pngs
shutil.rmtree(outdir)
# delete upscaled imgs if user requested
if not keep_imgs:
shutil.rmtree(upscaled_folder_path)
def check_and_download_realesrgan_ncnn(models_folder, current_user_os):
import zipfile
if current_user_os == 'Windows':
zip_file_name = 'realesrgan-ncnn-windows.zip'
executble_name = 'realesrgan-ncnn-vulkan.exe'
zip_checksum_value = '1d073f520a4a3f6438a500fea88407964da6d4a87489719bedfa7445b76c019fdd95a5c39576ca190d7ac22c906b33d5250a6f48cb7eda2b6af3e86ec5f09dfc'
download_url = 'https://github.com/hithereai/Real-ESRGAN/releases/download/real-esrgan-ncnn-windows/realesrgan-ncnn-windows.zip'
elif current_user_os == 'Linux':
zip_file_name = 'realesrgan-ncnn-linux.zip'
executble_name = 'realesrgan-ncnn-vulkan'
zip_checksum_value = 'df44c4e9a1ff66331079795f018a67fbad8ce37c4472929a56b5a38440cf96982d6e164a086b438c3d26d269025290dd6498bd50846bda8691521ecf8f0fafdf'
download_url = 'https://github.com/hithereai/Real-ESRGAN/releases/download/real-esrgan-ncnn-linux/realesrgan-ncnn-linux.zip'
elif current_user_os == 'Mac':
zip_file_name = 'realesrgan-ncnn-mac.zip'
executble_name = 'realesrgan-ncnn-vulkan'
zip_checksum_value = '65f09472025b55b18cf6ba64149ede8cded90c20e18d35a9edb1ab60715b383a6ffbf1be90d973fc2075cf99d4cc1411fbdc459411af5c904f544b8656111469'
download_url = 'https://github.com/hithereai/Real-ESRGAN/releases/download/real-esrgan-ncnn-mac/realesrgan-ncnn-mac.zip'
else: # who are you then?
raise Exception(f"No support for OS type: {current_user_os}")
# set paths
realesrgan_ncnn_folder = os.path.join(models_folder, 'realesrgan_ncnn')
realesrgan_exec_path = os.path.join(realesrgan_ncnn_folder, executble_name)
realesrgan_zip_path = os.path.join(realesrgan_ncnn_folder, zip_file_name)
# return if exec file already exist
if os.path.exists(realesrgan_exec_path):
return
try:
os.makedirs(realesrgan_ncnn_folder, exist_ok=True)
# download exec and model files from url
load_file_from_url(download_url, realesrgan_ncnn_folder)
# check downloaded zip's hash
with open(realesrgan_zip_path, 'rb') as f:
file_hash = checksum(realesrgan_zip_path)
# wrong hash, file is probably broken/ download interrupted
if file_hash != zip_checksum_value:
raise Exception(f"Error while downloading {realesrgan_zip_path}. Please download from: {download_url}, and extract its contents into: {models_folder}/realesrgan_ncnn")
# hash ok, extract zip contents into our folder
with zipfile.ZipFile(realesrgan_zip_path, 'r') as zip_ref:
zip_ref.extractall(realesrgan_ncnn_folder)
# delete the zip file
os.remove(realesrgan_zip_path)
# chmod 755 the exec if we're in a linux machine, otherwise we'd get permission errors
if current_user_os in ('Linux', 'Mac'):
os.chmod(realesrgan_exec_path, 0o755)
# enable running the exec for mac users
if current_user_os == 'Mac':
os.system(f'xattr -d com.apple.quarantine "{realesrgan_exec_path}"')
except Exception as e:
raise Exception(f"Error while downloading {realesrgan_zip_path}. Please download from: {download_url}, and extract its contents into: {models_folder}/realesrgan_ncnn")
def make_upscale_v2(upscale_factor, upscale_model, keep_imgs, imgs_raw_path, imgs_batch_id, deforum_models_path, current_user_os, ffmpeg_location, ffmpeg_crf, ffmpeg_preset, fps, stitch_from_frame, stitch_to_frame, audio_path, add_soundtrack, srt_path=None):
# get clean number from 'x2, x3' etc
clean_num_r_up_factor = extract_number(upscale_factor)
# set paths
realesrgan_ncnn_location = os.path.join(deforum_models_path, 'realesrgan_ncnn', 'realesrgan-ncnn-vulkan' + ('.exe' if current_user_os == 'Windows' else ''))
upscaled_folder_path = os.path.join(imgs_raw_path, f"{imgs_batch_id}_upscaled")
temp_folder_to_keep_raw_ims = os.path.join(upscaled_folder_path, 'temp_raw_imgs_to_upscale')
out_upscaled_mp4_path = os.path.join(imgs_raw_path, f"{imgs_batch_id}_Upscaled_{upscale_factor}.mp4")
# download upscaling model if needed
check_and_download_realesrgan_ncnn(deforum_models_path, current_user_os)
# make a folder with only the imgs we need to duplicate so we can call the ncnn with the folder syntax (quicker!)
duplicate_pngs_from_folder(from_folder=imgs_raw_path, to_folder=temp_folder_to_keep_raw_ims, img_batch_id=imgs_batch_id, orig_vid_name='Dummy')
# set dynamic cmd command
cmd = [realesrgan_ncnn_location, '-i', temp_folder_to_keep_raw_ims, '-o', upscaled_folder_path, '-s', str(clean_num_r_up_factor), '-n', upscale_model]
# msg to print - need it to hide that text later on (!)
msg_to_print = f"Upscaling raw output PNGs using {upscale_model} at {upscale_factor}..."
# blink the msg in the cli until action is done
console.print(msg_to_print, style="blink yellow", end="")
start_time = time.time()
# make call to ncnn upscaling executble
process = subprocess.run(cmd, capture_output=True, check=True, text=True, cwd=(os.path.join(deforum_models_path, 'realesrgan_ncnn') if current_user_os == 'Mac' else None))
print("\r" + " " * len(msg_to_print), end="", flush=True)
print(f"\r{msg_to_print}", flush=True)
print(f"\rUpscaling \033[0;32mdone\033[0m in {time.time() - start_time:.2f} seconds!", flush=True)
# set custom path for ffmpeg func below
upscaled_imgs_path_for_ffmpeg = os.path.join(upscaled_folder_path, f"{imgs_batch_id}_%09d.png")
# stitch video from upscaled pngs
ffmpeg_stitch_video(ffmpeg_location=ffmpeg_location, fps=fps, outmp4_path=out_upscaled_mp4_path, stitch_from_frame=stitch_from_frame, stitch_to_frame=stitch_to_frame, imgs_path=upscaled_imgs_path_for_ffmpeg, add_soundtrack=add_soundtrack, audio_path=audio_path, crf=ffmpeg_crf, preset=ffmpeg_preset, srt_path=srt_path)
# delete the duplicated raw imgs
shutil.rmtree(temp_folder_to_keep_raw_ims)
if not keep_imgs:
shutil.rmtree(upscaled_folder_path)
# NCNN Upscale section END |