File size: 2,340 Bytes
81f4d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os

import torch


def save_weights(model, filename, path="./saved_models"):
    os.makedirs(path, exist_ok=True)

    fpath = os.path.join(path, filename)
    torch.save(model.state_dict(), fpath)
    return

def save_checkpoint(model, optimizer, epoch, filename, root="./checkpoints"):
    if not os.path.isdir(root):
        os.makedirs(root)

    fpath = os.path.join(root, filename)
    torch.save(
        {
            "model": model.state_dict(),
            "optimizer": optimizer.state_dict(),
            "epoch": epoch
        }
        , fpath)

def load_weights(model, filename, path="./saved_models"):
    fpath = os.path.join(path, filename)
    state_dict = torch.load(fpath)
    model.load_state_dict(state_dict)
    return model

def load_checkpoint(fpath, model, optimizer=None):
    ckpt = torch.load(fpath, map_location='cpu')
    if ckpt is None:
        raise Exception(f"\nERROR Loading AdaBins_nyu.pt. Read this for a fix:\nhttps://github.com/deforum-art/deforum-for-automatic1111-webui/wiki/FAQ-&-Troubleshooting#3d-animation-mode-is-not-working-only-2d-works")
    if optimizer is None:
        optimizer = ckpt.get('optimizer', None)
    else:
        optimizer.load_state_dict(ckpt['optimizer'])
    epoch = ckpt['epoch']

    if 'model' in ckpt:
        ckpt = ckpt['model']
    load_dict = {}
    for k, v in ckpt.items():
        if k.startswith('module.'):
            k_ = k.replace('module.', '')
            load_dict[k_] = v
        else:
            load_dict[k] = v

    modified = {}  # backward compatibility to older naming of architecture blocks
    for k, v in load_dict.items():
        if k.startswith('adaptive_bins_layer.embedding_conv.'):
            k_ = k.replace('adaptive_bins_layer.embedding_conv.',
                           'adaptive_bins_layer.conv3x3.')
            modified[k_] = v
            # del load_dict[k]

        elif k.startswith('adaptive_bins_layer.patch_transformer.embedding_encoder'):

            k_ = k.replace('adaptive_bins_layer.patch_transformer.embedding_encoder',
                           'adaptive_bins_layer.patch_transformer.embedding_convPxP')
            modified[k_] = v
            # del load_dict[k]
        else:
            modified[k] = v  # else keep the original

    model.load_state_dict(modified)
    return model, optimizer, epoch