File size: 30,518 Bytes
81f4d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
# Copyright (C) 2023 Deforum LLC
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, version 3 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.

# Contact the authors: https://deforum.github.io/

import os
import pathlib
import random
import cv2
import numpy as np
import PIL
from PIL import Image, ImageChops, ImageOps, ImageEnhance
from scipy.ndimage.filters import gaussian_filter
from .consistency_check import make_consistency
from .human_masking import video2humanmasks
from .load_images import load_image
from .video_audio_utilities import vid2frames, get_quick_vid_info, get_frame_name

def delete_all_imgs_in_folder(folder_path):
        files = list(pathlib.Path(folder_path).glob('*.jpg'))
        files.extend(list(pathlib.Path(folder_path).glob('*.png')))
        for f in files: os.remove(f)
    
def hybrid_generation(args, anim_args, root):
    video_in_frame_path = os.path.join(args.outdir, 'inputframes')
    hybrid_frame_path = os.path.join(args.outdir, 'hybridframes')
    human_masks_path = os.path.join(args.outdir, 'human_masks')

    # create hybridframes folder whether using init_image or inputframes
    os.makedirs(hybrid_frame_path, exist_ok=True)

    if anim_args.hybrid_generate_inputframes:
        # create folders for the video input frames and optional hybrid frames to live in
        os.makedirs(video_in_frame_path, exist_ok=True)
                
        # delete frames if overwrite = true
        if anim_args.overwrite_extracted_frames:
            delete_all_imgs_in_folder(hybrid_frame_path)

        # save the video frames from input video
        print(f"Video to extract: {anim_args.video_init_path}")
        print(f"Extracting video (1 every {anim_args.extract_nth_frame}) frames to {video_in_frame_path}...")
        video_fps = vid2frames(video_path=anim_args.video_init_path, video_in_frame_path=video_in_frame_path, n=anim_args.extract_nth_frame, overwrite=anim_args.overwrite_extracted_frames, extract_from_frame=anim_args.extract_from_frame, extract_to_frame=anim_args.extract_to_frame)
    
    # extract alpha masks of humans from the extracted input video imgs
    if anim_args.hybrid_generate_human_masks != "None":
        # create a folder for the human masks imgs to live in
        print(f"Checking /creating a folder for the human masks")
        os.makedirs(human_masks_path, exist_ok=True)
            
        # delete frames if overwrite = true
        if anim_args.overwrite_extracted_frames:
            delete_all_imgs_in_folder(human_masks_path)
        
        # in case that generate_input_frames isn't selected, we won't get the video fps rate as vid2frames isn't called, So we'll check the video fps in here instead
        if not anim_args.hybrid_generate_inputframes:
            _, video_fps, _ = get_quick_vid_info(anim_args.video_init_path)
            
        # calculate the correct fps of the masked video according to the original video fps and 'extract_nth_frame'
        output_fps = video_fps/anim_args.extract_nth_frame
        
        # generate the actual alpha masks from the input imgs
        print(f"Extracting alpha humans masks from the input frames")
        video2humanmasks(video_in_frame_path, human_masks_path, anim_args.hybrid_generate_human_masks, output_fps)
        
    # get sorted list of inputfiles
    inputfiles = sorted(pathlib.Path(video_in_frame_path).glob('*.jpg'))

    if not anim_args.hybrid_use_init_image:
        # determine max frames from length of input frames
        anim_args.max_frames = len(inputfiles)
        if anim_args.max_frames < 1:
            raise Exception(f"Error: No input frames found in {video_in_frame_path}! Please check your input video path and whether you've opted to extract input frames.")
        print(f"Using {anim_args.max_frames} input frames from {video_in_frame_path}...")

    # use first frame as init
    if anim_args.hybrid_use_first_frame_as_init_image:
        for f in inputfiles:
            args.init_image = str(f)
            args.init_image_box = None  # init_image_box not used in this case
            args.use_init = True
            print(f"Using init_image from video: {args.init_image}")
            break

    return args, anim_args, inputfiles

def hybrid_composite(args, anim_args, frame_idx, prev_img, depth_model, hybrid_comp_schedules, root):
    video_frame = os.path.join(args.outdir, 'inputframes', get_frame_name(anim_args.video_init_path) + f"{frame_idx:09}.jpg")
    video_depth_frame = os.path.join(args.outdir, 'hybridframes', get_frame_name(anim_args.video_init_path) + f"_vid_depth{frame_idx:09}.jpg")
    depth_frame = os.path.join(args.outdir, f"{root.timestring}_depth_{frame_idx-1:09}.png")
    mask_frame = os.path.join(args.outdir, 'hybridframes', get_frame_name(anim_args.video_init_path) + f"_mask{frame_idx:09}.jpg")
    comp_frame = os.path.join(args.outdir, 'hybridframes', get_frame_name(anim_args.video_init_path) + f"_comp{frame_idx:09}.jpg")
    prev_frame = os.path.join(args.outdir, 'hybridframes', get_frame_name(anim_args.video_init_path) + f"_prev{frame_idx:09}.jpg")
    prev_img = cv2.cvtColor(prev_img, cv2.COLOR_BGR2RGB)
    prev_img_hybrid = Image.fromarray(prev_img)
    if anim_args.hybrid_use_init_image:
        video_image = load_image(args.init_image, args.init_image_box)
    else:
        video_image = Image.open(video_frame)
    video_image = video_image.resize((args.W, args.H), PIL.Image.LANCZOS)
    hybrid_mask = None

    # composite mask types
    if anim_args.hybrid_comp_mask_type == 'Depth': # get depth from last generation
        hybrid_mask = Image.open(depth_frame)
    elif anim_args.hybrid_comp_mask_type == 'Video Depth': # get video depth
        video_depth = depth_model.predict(np.array(video_image), anim_args.midas_weight, root.half_precision)
        depth_model.save(video_depth_frame, video_depth)
        hybrid_mask = Image.open(video_depth_frame)
    elif anim_args.hybrid_comp_mask_type == 'Blend': # create blend mask image
        hybrid_mask = Image.blend(ImageOps.grayscale(prev_img_hybrid), ImageOps.grayscale(video_image), hybrid_comp_schedules['mask_blend_alpha'])
    elif anim_args.hybrid_comp_mask_type == 'Difference': # create difference mask image
        hybrid_mask = ImageChops.difference(ImageOps.grayscale(prev_img_hybrid), ImageOps.grayscale(video_image))
        
    # optionally invert mask, if mask type is defined
    if anim_args.hybrid_comp_mask_inverse and anim_args.hybrid_comp_mask_type != "None":
        hybrid_mask = ImageOps.invert(hybrid_mask)

    # if a mask type is selected, make composition
    if hybrid_mask is None:
        hybrid_comp = video_image
    else:
        # ensure grayscale
        hybrid_mask = ImageOps.grayscale(hybrid_mask)
        # equalization before
        if anim_args.hybrid_comp_mask_equalize in ['Before', 'Both']:
            hybrid_mask = ImageOps.equalize(hybrid_mask)        
        # contrast
        hybrid_mask = ImageEnhance.Contrast(hybrid_mask).enhance(hybrid_comp_schedules['mask_contrast'])
        # auto contrast with cutoffs lo/hi
        if anim_args.hybrid_comp_mask_auto_contrast:
            hybrid_mask = autocontrast_grayscale(np.array(hybrid_mask), hybrid_comp_schedules['mask_auto_contrast_cutoff_low'], hybrid_comp_schedules['mask_auto_contrast_cutoff_high'])
            hybrid_mask = Image.fromarray(hybrid_mask)
            hybrid_mask = ImageOps.grayscale(hybrid_mask)   
        if anim_args.hybrid_comp_save_extra_frames:
            hybrid_mask.save(mask_frame)        
        # equalization after
        if anim_args.hybrid_comp_mask_equalize in ['After', 'Both']:
            hybrid_mask = ImageOps.equalize(hybrid_mask)        
        # do compositing and save
        hybrid_comp = Image.composite(prev_img_hybrid, video_image, hybrid_mask)            
        if anim_args.hybrid_comp_save_extra_frames:
            hybrid_comp.save(comp_frame)

    # final blend of composite with prev_img, or just a blend if no composite is selected
    hybrid_blend = Image.blend(prev_img_hybrid, hybrid_comp, hybrid_comp_schedules['alpha'])  
    if anim_args.hybrid_comp_save_extra_frames:
        hybrid_blend.save(prev_frame)

    prev_img = cv2.cvtColor(np.array(hybrid_blend), cv2.COLOR_RGB2BGR)

    # restore to np array and return
    return args, prev_img

def get_matrix_for_hybrid_motion(frame_idx, dimensions, inputfiles, hybrid_motion):
    print(f"Calculating {hybrid_motion} RANSAC matrix for frames {frame_idx} to {frame_idx+1}")
    img1 = cv2.cvtColor(get_resized_image_from_filename(str(inputfiles[frame_idx]), dimensions), cv2.COLOR_BGR2GRAY)
    img2 = cv2.cvtColor(get_resized_image_from_filename(str(inputfiles[frame_idx+1]), dimensions), cv2.COLOR_BGR2GRAY)
    M = get_transformation_matrix_from_images(img1, img2, hybrid_motion)
    return M

def get_matrix_for_hybrid_motion_prev(frame_idx, dimensions, inputfiles, prev_img, hybrid_motion):
    print(f"Calculating {hybrid_motion} RANSAC matrix for frames {frame_idx} to {frame_idx+1}")
    # first handle invalid images by returning default matrix
    height, width = prev_img.shape[:2]
    if height == 0 or width == 0 or prev_img != np.uint8:
        return get_hybrid_motion_default_matrix(hybrid_motion)
    else:
        prev_img_gray = cv2.cvtColor(prev_img, cv2.COLOR_BGR2GRAY)
        img = cv2.cvtColor(get_resized_image_from_filename(str(inputfiles[frame_idx+1]), dimensions), cv2.COLOR_BGR2GRAY)
        M = get_transformation_matrix_from_images(prev_img_gray, img, hybrid_motion)
        return M

def get_flow_for_hybrid_motion(frame_idx, dimensions, inputfiles, hybrid_frame_path, prev_flow, method, raft_model, consistency_check=True, consistency_blur=0, do_flow_visualization=False):
    print(f"Calculating {method} optical flow {'w/consistency mask' if consistency_check else ''} for frames {frame_idx} to {frame_idx+1}")
    i1 = get_resized_image_from_filename(str(inputfiles[frame_idx]), dimensions)
    i2 = get_resized_image_from_filename(str(inputfiles[frame_idx+1]), dimensions)
    if consistency_check:
        flow, reliable_flow = get_reliable_flow_from_images(i1, i2, method, raft_model, prev_flow, consistency_blur) # forward flow w/backward consistency check
        if do_flow_visualization: save_flow_mask_visualization(frame_idx, reliable_flow, hybrid_frame_path)
    else:
        flow = get_flow_from_images(i1, i2, method, raft_model, prev_flow) # old single flow forward
    if do_flow_visualization: save_flow_visualization(frame_idx, dimensions, flow, inputfiles, hybrid_frame_path)
    return flow

def get_flow_for_hybrid_motion_prev(frame_idx, dimensions, inputfiles, hybrid_frame_path, prev_flow, prev_img, method, raft_model, consistency_check=True, consistency_blur=0, do_flow_visualization=False):
    print(f"Calculating {method} optical flow {'w/consistency mask' if consistency_check else ''} for frames {frame_idx} to {frame_idx+1}")
    reliable_flow = None
    # first handle invalid images by returning default flow
    height, width = prev_img.shape[:2]   
    if height == 0 or width == 0:
        flow = get_hybrid_motion_default_flow(dimensions)
    else:
        i1 = prev_img.astype(np.uint8)
        i2 = get_resized_image_from_filename(str(inputfiles[frame_idx+1]), dimensions)
        if consistency_check:
            flow, reliable_flow = get_reliable_flow_from_images(i1, i2, method, raft_model, prev_flow, consistency_blur) # forward flow w/backward consistency check
            if do_flow_visualization: save_flow_mask_visualization(frame_idx, reliable_flow, hybrid_frame_path)
        else:
            flow = get_flow_from_images(i1, i2, method, raft_model, prev_flow)
    if do_flow_visualization: save_flow_visualization(frame_idx, dimensions, flow, inputfiles, hybrid_frame_path)
    return flow

def get_reliable_flow_from_images(i1, i2, method, raft_model, prev_flow, consistency_blur, reliability=0):
    flow_forward = get_flow_from_images(i1, i2, method, raft_model, prev_flow)
    flow_backward = get_flow_from_images(i2, i1, method, raft_model, None)
    reliable_flow = make_consistency(flow_forward, flow_backward, edges_unreliable=False)
    if consistency_blur > 0:
        reliable_flow = custom_gaussian_blur(reliable_flow.astype(np.float32), 1, consistency_blur)
    return filter_flow(flow_forward, reliable_flow, consistency_blur, reliability), reliable_flow

def custom_gaussian_blur(input_array, blur_size, sigma):
    return gaussian_filter(input_array, sigma=(sigma, sigma, 0), order=0, mode='constant', cval=0.0, truncate=blur_size)

def filter_flow(flow, reliable_flow, reliability=0.5, consistency_blur=0):
    # reliability from reliabile flow: -0.75 is bad, 0 is meh/outside, 1 is great
    # Create a mask from the first channel of the reliable_flow array
    mask = reliable_flow[..., 0]

    # to set everything to 1 or 0 based on reliability
    # mask = np.where(mask >= reliability, 1, 0)

    # Expand the mask to match the shape of the forward_flow array
    mask = np.repeat(mask[..., np.newaxis], flow.shape[2], axis=2)

    # Apply the mask to the flow
    return flow * mask

def image_transform_ransac(image_cv2, M, hybrid_motion, depth=None):
    if hybrid_motion == "Perspective":
        return image_transform_perspective(image_cv2, M, depth)
    else: # Affine
        return image_transform_affine(image_cv2, M, depth)

def image_transform_optical_flow(img, flow, flow_factor):
    # if flow factor not normal, calculate flow factor
    if flow_factor != 1:
        flow = flow * flow_factor
    # flow is reversed, so you need to reverse it:
    flow = -flow
    h, w = img.shape[:2]
    flow[:, :, 0] += np.arange(w)
    flow[:, :, 1] += np.arange(h)[:,np.newaxis]
    return remap(img, flow)

def image_transform_affine(image_cv2, M, depth=None):
    if depth is None:
        return cv2.warpAffine(
            image_cv2,
            M,
            (image_cv2.shape[1],image_cv2.shape[0]),
            borderMode=cv2.BORDER_REFLECT_101
        )
    else:  # NEED TO IMPLEMENT THE FOLLOWING FUNCTION
        return depth_based_affine_warp(
            image_cv2,
            depth,
            M            
        )

def image_transform_perspective(image_cv2, M, depth=None):
    if depth is None:
        return cv2.warpPerspective(
            image_cv2,
            M,
            (image_cv2.shape[1], image_cv2.shape[0]),
            borderMode=cv2.BORDER_REFLECT_101
        )
    else:  # NEED TO IMPLEMENT THE FOLLOWING FUNCTION
        return render_3d_perspective(
            image_cv2,
            depth,
            M            
        )

def get_hybrid_motion_default_matrix(hybrid_motion):
    if hybrid_motion == "Perspective":
        arr = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])
    else:
        arr = np.array([[1., 0., 0.], [0., 1., 0.]])
    return arr

def get_hybrid_motion_default_flow(dimensions):
    cols, rows = dimensions
    flow = np.zeros((rows, cols, 2), np.float32)
    return flow

def get_transformation_matrix_from_images(img1, img2, hybrid_motion, confidence=0.75):
    # Create SIFT detector and feature extractor
    sift = cv2.SIFT_create()

    # Detect keypoints and compute descriptors
    kp1, des1 = sift.detectAndCompute(img1, None)
    kp2, des2 = sift.detectAndCompute(img2, None)

    # Create BFMatcher object and match descriptors
    bf = cv2.BFMatcher()
    matches = bf.knnMatch(des1, des2, k=2)

    # Apply ratio test to filter good matches
    good_matches = []
    for m, n in matches:
        if m.distance < confidence * n.distance:
            good_matches.append(m)

    if len(good_matches) <= 8:
        get_hybrid_motion_default_matrix(hybrid_motion)

    # Convert keypoints to numpy arrays
    src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
    dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)

    if len(src_pts) <= 8 or len(dst_pts) <= 8:
        return get_hybrid_motion_default_matrix(hybrid_motion)
    elif hybrid_motion == "Perspective": # Perspective transformation (3x3)
        transformation_matrix, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
        return transformation_matrix
    else: # Affine - rigid transformation (no skew 3x2)
        transformation_rigid_matrix, rigid_mask = cv2.estimateAffinePartial2D(src_pts, dst_pts)
        return transformation_rigid_matrix

def get_flow_from_images(i1, i2, method, raft_model, prev_flow=None):
    if method == "RAFT":
        if raft_model is None:
            raise Exception("RAFT Model not provided to get_flow_from_images function, cannot continue.")
        return get_flow_from_images_RAFT(i1, i2, raft_model)
    elif method == "DIS Medium":
        return get_flow_from_images_DIS(i1, i2, 'medium', prev_flow)
    elif method == "DIS Fine":
        return get_flow_from_images_DIS(i1, i2, 'fine', prev_flow)
    elif method == "DenseRLOF": # Unused - requires running opencv-contrib-python (full opencv) INSTEAD of opencv-python
        return get_flow_from_images_Dense_RLOF(i1, i2, prev_flow)
    elif method == "SF": # Unused - requires running opencv-contrib-python (full opencv) INSTEAD of opencv-python
        return get_flow_from_images_SF(i1, i2, prev_flow)
    elif method == "DualTVL1": # Unused - requires running opencv-contrib-python (full opencv) INSTEAD of opencv-python
        return get_flow_from_images_DualTVL1(i1, i2, prev_flow)
    elif method == "DeepFlow": # Unused - requires running opencv-contrib-python (full opencv) INSTEAD of opencv-python
        return get_flow_from_images_DeepFlow(i1, i2, prev_flow)
    elif method == "PCAFlow": # Unused - requires running opencv-contrib-python (full opencv) INSTEAD of opencv-python
        return get_flow_from_images_PCAFlow(i1, i2, prev_flow)
    elif method == "Farneback": # Farneback Normal:
        return get_flow_from_images_Farneback(i1, i2, prev_flow)
    # if we reached this point, something went wrong. raise an error:
    raise RuntimeError(f"Invald flow method name: '{method}'")

def get_flow_from_images_RAFT(i1, i2, raft_model):
    flow = raft_model.predict(i1, i2)
    return flow

def get_flow_from_images_DIS(i1, i2, preset, prev_flow):
    # DIS PRESETS CHART KEY: finest scale, grad desc its, patch size
    # DIS_MEDIUM: 1, 25, 8 | DIS_FAST: 2, 16, 8 | DIS_ULTRAFAST: 2, 12, 8
    if preset == 'medium': preset_code = cv2.DISOPTICAL_FLOW_PRESET_MEDIUM    
    elif preset == 'fast': preset_code = cv2.DISOPTICAL_FLOW_PRESET_FAST    
    elif preset == 'ultrafast': preset_code = cv2.DISOPTICAL_FLOW_PRESET_ULTRAFAST   
    elif preset in ['slow','fine']: preset_code = None
    i1 = cv2.cvtColor(i1, cv2.COLOR_BGR2GRAY)
    i2 = cv2.cvtColor(i2, cv2.COLOR_BGR2GRAY)
    dis = cv2.DISOpticalFlow_create(preset_code)
    # custom presets
    if preset == 'slow':
        dis.setGradientDescentIterations(192)
        dis.setFinestScale(1)
        dis.setPatchSize(8)
        dis.setPatchStride(4)
    if preset == 'fine':
        dis.setGradientDescentIterations(192)
        dis.setFinestScale(0)
        dis.setPatchSize(8)
        dis.setPatchStride(4)
    return dis.calc(i1, i2, prev_flow)

def get_flow_from_images_Dense_RLOF(i1, i2, last_flow=None):
    return cv2.optflow.calcOpticalFlowDenseRLOF(i1, i2, flow = last_flow)

def get_flow_from_images_SF(i1, i2, last_flow=None, layers = 3, averaging_block_size = 2, max_flow = 4):
    return cv2.optflow.calcOpticalFlowSF(i1, i2, layers, averaging_block_size, max_flow)

def get_flow_from_images_DualTVL1(i1, i2, prev_flow):
    i1 = cv2.cvtColor(i1, cv2.COLOR_BGR2GRAY)
    i2 = cv2.cvtColor(i2, cv2.COLOR_BGR2GRAY)
    f = cv2.optflow.DualTVL1OpticalFlow_create()
    return f.calc(i1, i2, prev_flow)

def get_flow_from_images_DeepFlow(i1, i2, prev_flow):
    i1 = cv2.cvtColor(i1, cv2.COLOR_BGR2GRAY)
    i2 = cv2.cvtColor(i2, cv2.COLOR_BGR2GRAY)
    f = cv2.optflow.createOptFlow_DeepFlow()
    return f.calc(i1, i2, prev_flow)

def get_flow_from_images_PCAFlow(i1, i2, prev_flow):
    i1 = cv2.cvtColor(i1, cv2.COLOR_BGR2GRAY)
    i2 = cv2.cvtColor(i2, cv2.COLOR_BGR2GRAY)
    f = cv2.optflow.createOptFlow_PCAFlow()
    return f.calc(i1, i2, prev_flow)

def get_flow_from_images_Farneback(i1, i2, preset="normal", last_flow=None, pyr_scale = 0.5, levels = 3, winsize = 15, iterations = 3, poly_n = 5, poly_sigma = 1.2, flags = 0):
    flags = cv2.OPTFLOW_FARNEBACK_GAUSSIAN         # Specify the operation flags
    pyr_scale = 0.5   # The image scale (<1) to build pyramids for each image
    if preset == "fine":
        levels = 13       # The number of pyramid layers, including the initial image
        winsize = 77      # The averaging window size
        iterations = 13   # The number of iterations at each pyramid level
        poly_n = 15       # The size of the pixel neighborhood used to find polynomial expansion in each pixel
        poly_sigma = 0.8  # The standard deviation of the Gaussian used to smooth derivatives used as a basis for the polynomial expansion
    else: # "normal"
        levels = 5        # The number of pyramid layers, including the initial image
        winsize = 21      # The averaging window size
        iterations = 5    # The number of iterations at each pyramid level
        poly_n = 7        # The size of the pixel neighborhood used to find polynomial expansion in each pixel
        poly_sigma = 1.2  # The standard deviation of the Gaussian used to smooth derivatives used as a basis for the polynomial expansion
    i1 = cv2.cvtColor(i1, cv2.COLOR_BGR2GRAY)
    i2 = cv2.cvtColor(i2, cv2.COLOR_BGR2GRAY)
    flags = 0 # flags = cv2.OPTFLOW_USE_INITIAL_FLOW    
    flow = cv2.calcOpticalFlowFarneback(i1, i2, last_flow, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags)
    return flow

def save_flow_visualization(frame_idx, dimensions, flow, inputfiles, hybrid_frame_path):
    flow_img_file = os.path.join(hybrid_frame_path, f"flow{frame_idx:09}.jpg")
    flow_img = cv2.imread(str(inputfiles[frame_idx]))
    flow_img = cv2.resize(flow_img, (dimensions[0], dimensions[1]), cv2.INTER_AREA)
    flow_img = cv2.cvtColor(flow_img, cv2.COLOR_RGB2GRAY)
    flow_img = cv2.cvtColor(flow_img, cv2.COLOR_GRAY2BGR)
    flow_img = draw_flow_lines_in_grid_in_color(flow_img, flow)
    flow_img = cv2.cvtColor(flow_img, cv2.COLOR_BGR2RGB)
    cv2.imwrite(flow_img_file, flow_img)
    print(f"Saved optical flow visualization: {flow_img_file}")

def save_flow_mask_visualization(frame_idx, reliable_flow, hybrid_frame_path, color=True):
    flow_mask_img_file = os.path.join(hybrid_frame_path, f"flow_mask{frame_idx:09}.jpg")
    if color:
        # Normalize the reliable_flow array to the range [0, 255]
        normalized_reliable_flow = (reliable_flow - reliable_flow.min()) / (reliable_flow.max() - reliable_flow.min()) * 255
        # Change the data type to np.uint8
        mask_image = normalized_reliable_flow.astype(np.uint8)
    else:
        # Extract the first channel of the reliable_flow array
        first_channel = reliable_flow[..., 0]
        # Normalize the first channel to the range [0, 255]
        normalized_first_channel = (first_channel - first_channel.min()) / (first_channel.max() - first_channel.min()) * 255
        # Change the data type to np.uint8
        grayscale_image = normalized_first_channel.astype(np.uint8)
        # Replicate the grayscale channel three times to form a BGR image
        mask_image = np.stack((grayscale_image, grayscale_image, grayscale_image), axis=2)
    cv2.imwrite(flow_mask_img_file, mask_image)
    print(f"Saved mask flow visualization: {flow_mask_img_file}")

def reliable_flow_to_image(reliable_flow):
    # Extract the first channel of the reliable_flow array
    first_channel = reliable_flow[..., 0]
    # Normalize the first channel to the range [0, 255]
    normalized_first_channel = (first_channel - first_channel.min()) / (first_channel.max() - first_channel.min()) * 255
    # Change the data type to np.uint8
    grayscale_image = normalized_first_channel.astype(np.uint8)
    # Replicate the grayscale channel three times to form a BGR image
    bgr_image = np.stack((grayscale_image, grayscale_image, grayscale_image), axis=2)
    return bgr_image

def draw_flow_lines_in_grid_in_color(img, flow, step=8, magnitude_multiplier=1, min_magnitude = 0, max_magnitude = 10000):
    flow = flow * magnitude_multiplier
    h, w = img.shape[:2]
    y, x = np.mgrid[step/2:h:step, step/2:w:step].reshape(2,-1).astype(int)
    fx, fy = flow[y,x].T
    lines = np.vstack([x, y, x+fx, y+fy]).T.reshape(-1, 2, 2)
    lines = np.int32(lines + 0.5)
    vis = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    vis = cv2.cvtColor(vis, cv2.COLOR_GRAY2BGR)

    mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1])
    hsv = np.zeros((flow.shape[0], flow.shape[1], 3), dtype=np.uint8)
    hsv[...,0] = ang*180/np.pi/2
    hsv[...,1] = 255
    hsv[...,2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
    bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    vis = cv2.add(vis, bgr)

    # Iterate through the lines
    for (x1, y1), (x2, y2) in lines:
        # Calculate the magnitude of the line
        magnitude = np.sqrt((x2 - x1)**2 + (y2 - y1)**2)

        # Only draw the line if it falls within the magnitude range
        if min_magnitude <= magnitude <= max_magnitude:
            b = int(bgr[y1, x1, 0])
            g = int(bgr[y1, x1, 1])
            r = int(bgr[y1, x1, 2])
            color = (b, g, r)
            cv2.arrowedLine(vis, (x1, y1), (x2, y2), color, thickness=1, tipLength=0.1)    
    return vis

def draw_flow_lines_in_color(img, flow, threshold=3, magnitude_multiplier=1, min_magnitude = 0, max_magnitude = 10000):
    # h, w = img.shape[:2]
    vis = img.copy()  # Create a copy of the input image
    
    # Find the locations in the flow field where the magnitude of the flow is greater than the threshold
    mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1])
    idx = np.where(mag > threshold)

    # Create HSV image
    hsv = np.zeros((flow.shape[0], flow.shape[1], 3), dtype=np.uint8)
    hsv[...,0] = ang*180/np.pi/2
    hsv[...,1] = 255
    hsv[...,2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)

    # Convert HSV image to BGR
    bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)

    # Add color from bgr 
    vis = cv2.add(vis, bgr)

    # Draw an arrow at each of these locations to indicate the direction of the flow
    for i, (y, x) in enumerate(zip(idx[0], idx[1])):
        # Calculate the magnitude of the line
        x2 = x + magnitude_multiplier * int(flow[y, x, 0])
        y2 = y + magnitude_multiplier * int(flow[y, x, 1])
        magnitude = np.sqrt((x2 - x)**2 + (y2 - y)**2)

        # Only draw the line if it falls within the magnitude range
        if min_magnitude <= magnitude <= max_magnitude:
            if i % random.randint(100, 200) == 0:
                b = int(bgr[y, x, 0])
                g = int(bgr[y, x, 1])
                r = int(bgr[y, x, 2])
                color = (b, g, r)
                cv2.arrowedLine(vis, (x, y), (x2, y2), color, thickness=1, tipLength=0.25)

    return vis

def autocontrast_grayscale(image, low_cutoff=0, high_cutoff=100):
    # Perform autocontrast on a grayscale np array image.
    # Find the minimum and maximum values in the image
    min_val = np.percentile(image, low_cutoff)
    max_val = np.percentile(image, high_cutoff)

    # Scale the image so that the minimum value is 0 and the maximum value is 255
    image = 255 * (image - min_val) / (max_val - min_val)

    # Clip values that fall outside the range [0, 255]
    image = np.clip(image, 0, 255)

    return image

def get_resized_image_from_filename(im, dimensions):
    img = cv2.imread(im)
    return cv2.resize(img, (dimensions[0], dimensions[1]), cv2.INTER_AREA)

def remap(img, flow):
    border_mode = cv2.BORDER_REFLECT_101
    h, w = img.shape[:2]
    displacement = int(h * 0.25), int(w * 0.25)
    larger_img = cv2.copyMakeBorder(img, displacement[0], displacement[0], displacement[1], displacement[1], border_mode)
    lh, lw = larger_img.shape[:2]
    larger_flow = extend_flow(flow, lw, lh)
    remapped_img = cv2.remap(larger_img, larger_flow, None, cv2.INTER_LINEAR, border_mode)
    output_img = center_crop_image(remapped_img, w, h)
    return output_img

def center_crop_image(img, w, h):
    y, x, _ = img.shape
    width_indent = int((x - w) / 2)
    height_indent = int((y - h) / 2)
    cropped_img = img[height_indent:y-height_indent, width_indent:x-width_indent]
    return cropped_img

def extend_flow(flow, w, h):
    # Get the shape of the original flow image
    flow_h, flow_w = flow.shape[:2]
    # Calculate the position of the image in the new image
    x_offset = int((w - flow_w) / 2)
    y_offset = int((h - flow_h) / 2)
    # Generate the X and Y grids
    x_grid, y_grid = np.meshgrid(np.arange(w), np.arange(h))
    # Create the new flow image and set it to the X and Y grids
    new_flow = np.dstack((x_grid, y_grid)).astype(np.float32)
    # Shift the values of the original flow by the size of the border
    flow[:,:,0] += x_offset
    flow[:,:,1] += y_offset
    # Overwrite the middle of the grid with the original flow
    new_flow[y_offset:y_offset+flow_h, x_offset:x_offset+flow_w, :] = flow
    # Return the extended image
    return new_flow

def abs_flow_to_rel_flow(flow, width, height):
    fx, fy = flow[:,:,0], flow[:,:,1]
    max_flow_x = np.max(np.abs(fx))
    max_flow_y = np.max(np.abs(fy))
    max_flow = max(max_flow_x, max_flow_y)

    rel_fx = fx / (max_flow * width)
    rel_fy = fy / (max_flow * height)
    return np.dstack((rel_fx, rel_fy))

def rel_flow_to_abs_flow(rel_flow, width, height):
    rel_fx, rel_fy = rel_flow[:,:,0], rel_flow[:,:,1]
    
    max_flow_x = np.max(np.abs(rel_fx * width))
    max_flow_y = np.max(np.abs(rel_fy * height))
    max_flow = max(max_flow_x, max_flow_y)

    fx = rel_fx * (max_flow * width)
    fy = rel_fy * (max_flow * height)
    return np.dstack((fx, fy))