File size: 30,518 Bytes
81f4d3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
# Copyright (C) 2023 Deforum LLC
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, version 3 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# Contact the authors: https://deforum.github.io/
import os
import pathlib
import random
import cv2
import numpy as np
import PIL
from PIL import Image, ImageChops, ImageOps, ImageEnhance
from scipy.ndimage.filters import gaussian_filter
from .consistency_check import make_consistency
from .human_masking import video2humanmasks
from .load_images import load_image
from .video_audio_utilities import vid2frames, get_quick_vid_info, get_frame_name
def delete_all_imgs_in_folder(folder_path):
files = list(pathlib.Path(folder_path).glob('*.jpg'))
files.extend(list(pathlib.Path(folder_path).glob('*.png')))
for f in files: os.remove(f)
def hybrid_generation(args, anim_args, root):
video_in_frame_path = os.path.join(args.outdir, 'inputframes')
hybrid_frame_path = os.path.join(args.outdir, 'hybridframes')
human_masks_path = os.path.join(args.outdir, 'human_masks')
# create hybridframes folder whether using init_image or inputframes
os.makedirs(hybrid_frame_path, exist_ok=True)
if anim_args.hybrid_generate_inputframes:
# create folders for the video input frames and optional hybrid frames to live in
os.makedirs(video_in_frame_path, exist_ok=True)
# delete frames if overwrite = true
if anim_args.overwrite_extracted_frames:
delete_all_imgs_in_folder(hybrid_frame_path)
# save the video frames from input video
print(f"Video to extract: {anim_args.video_init_path}")
print(f"Extracting video (1 every {anim_args.extract_nth_frame}) frames to {video_in_frame_path}...")
video_fps = vid2frames(video_path=anim_args.video_init_path, video_in_frame_path=video_in_frame_path, n=anim_args.extract_nth_frame, overwrite=anim_args.overwrite_extracted_frames, extract_from_frame=anim_args.extract_from_frame, extract_to_frame=anim_args.extract_to_frame)
# extract alpha masks of humans from the extracted input video imgs
if anim_args.hybrid_generate_human_masks != "None":
# create a folder for the human masks imgs to live in
print(f"Checking /creating a folder for the human masks")
os.makedirs(human_masks_path, exist_ok=True)
# delete frames if overwrite = true
if anim_args.overwrite_extracted_frames:
delete_all_imgs_in_folder(human_masks_path)
# in case that generate_input_frames isn't selected, we won't get the video fps rate as vid2frames isn't called, So we'll check the video fps in here instead
if not anim_args.hybrid_generate_inputframes:
_, video_fps, _ = get_quick_vid_info(anim_args.video_init_path)
# calculate the correct fps of the masked video according to the original video fps and 'extract_nth_frame'
output_fps = video_fps/anim_args.extract_nth_frame
# generate the actual alpha masks from the input imgs
print(f"Extracting alpha humans masks from the input frames")
video2humanmasks(video_in_frame_path, human_masks_path, anim_args.hybrid_generate_human_masks, output_fps)
# get sorted list of inputfiles
inputfiles = sorted(pathlib.Path(video_in_frame_path).glob('*.jpg'))
if not anim_args.hybrid_use_init_image:
# determine max frames from length of input frames
anim_args.max_frames = len(inputfiles)
if anim_args.max_frames < 1:
raise Exception(f"Error: No input frames found in {video_in_frame_path}! Please check your input video path and whether you've opted to extract input frames.")
print(f"Using {anim_args.max_frames} input frames from {video_in_frame_path}...")
# use first frame as init
if anim_args.hybrid_use_first_frame_as_init_image:
for f in inputfiles:
args.init_image = str(f)
args.init_image_box = None # init_image_box not used in this case
args.use_init = True
print(f"Using init_image from video: {args.init_image}")
break
return args, anim_args, inputfiles
def hybrid_composite(args, anim_args, frame_idx, prev_img, depth_model, hybrid_comp_schedules, root):
video_frame = os.path.join(args.outdir, 'inputframes', get_frame_name(anim_args.video_init_path) + f"{frame_idx:09}.jpg")
video_depth_frame = os.path.join(args.outdir, 'hybridframes', get_frame_name(anim_args.video_init_path) + f"_vid_depth{frame_idx:09}.jpg")
depth_frame = os.path.join(args.outdir, f"{root.timestring}_depth_{frame_idx-1:09}.png")
mask_frame = os.path.join(args.outdir, 'hybridframes', get_frame_name(anim_args.video_init_path) + f"_mask{frame_idx:09}.jpg")
comp_frame = os.path.join(args.outdir, 'hybridframes', get_frame_name(anim_args.video_init_path) + f"_comp{frame_idx:09}.jpg")
prev_frame = os.path.join(args.outdir, 'hybridframes', get_frame_name(anim_args.video_init_path) + f"_prev{frame_idx:09}.jpg")
prev_img = cv2.cvtColor(prev_img, cv2.COLOR_BGR2RGB)
prev_img_hybrid = Image.fromarray(prev_img)
if anim_args.hybrid_use_init_image:
video_image = load_image(args.init_image, args.init_image_box)
else:
video_image = Image.open(video_frame)
video_image = video_image.resize((args.W, args.H), PIL.Image.LANCZOS)
hybrid_mask = None
# composite mask types
if anim_args.hybrid_comp_mask_type == 'Depth': # get depth from last generation
hybrid_mask = Image.open(depth_frame)
elif anim_args.hybrid_comp_mask_type == 'Video Depth': # get video depth
video_depth = depth_model.predict(np.array(video_image), anim_args.midas_weight, root.half_precision)
depth_model.save(video_depth_frame, video_depth)
hybrid_mask = Image.open(video_depth_frame)
elif anim_args.hybrid_comp_mask_type == 'Blend': # create blend mask image
hybrid_mask = Image.blend(ImageOps.grayscale(prev_img_hybrid), ImageOps.grayscale(video_image), hybrid_comp_schedules['mask_blend_alpha'])
elif anim_args.hybrid_comp_mask_type == 'Difference': # create difference mask image
hybrid_mask = ImageChops.difference(ImageOps.grayscale(prev_img_hybrid), ImageOps.grayscale(video_image))
# optionally invert mask, if mask type is defined
if anim_args.hybrid_comp_mask_inverse and anim_args.hybrid_comp_mask_type != "None":
hybrid_mask = ImageOps.invert(hybrid_mask)
# if a mask type is selected, make composition
if hybrid_mask is None:
hybrid_comp = video_image
else:
# ensure grayscale
hybrid_mask = ImageOps.grayscale(hybrid_mask)
# equalization before
if anim_args.hybrid_comp_mask_equalize in ['Before', 'Both']:
hybrid_mask = ImageOps.equalize(hybrid_mask)
# contrast
hybrid_mask = ImageEnhance.Contrast(hybrid_mask).enhance(hybrid_comp_schedules['mask_contrast'])
# auto contrast with cutoffs lo/hi
if anim_args.hybrid_comp_mask_auto_contrast:
hybrid_mask = autocontrast_grayscale(np.array(hybrid_mask), hybrid_comp_schedules['mask_auto_contrast_cutoff_low'], hybrid_comp_schedules['mask_auto_contrast_cutoff_high'])
hybrid_mask = Image.fromarray(hybrid_mask)
hybrid_mask = ImageOps.grayscale(hybrid_mask)
if anim_args.hybrid_comp_save_extra_frames:
hybrid_mask.save(mask_frame)
# equalization after
if anim_args.hybrid_comp_mask_equalize in ['After', 'Both']:
hybrid_mask = ImageOps.equalize(hybrid_mask)
# do compositing and save
hybrid_comp = Image.composite(prev_img_hybrid, video_image, hybrid_mask)
if anim_args.hybrid_comp_save_extra_frames:
hybrid_comp.save(comp_frame)
# final blend of composite with prev_img, or just a blend if no composite is selected
hybrid_blend = Image.blend(prev_img_hybrid, hybrid_comp, hybrid_comp_schedules['alpha'])
if anim_args.hybrid_comp_save_extra_frames:
hybrid_blend.save(prev_frame)
prev_img = cv2.cvtColor(np.array(hybrid_blend), cv2.COLOR_RGB2BGR)
# restore to np array and return
return args, prev_img
def get_matrix_for_hybrid_motion(frame_idx, dimensions, inputfiles, hybrid_motion):
print(f"Calculating {hybrid_motion} RANSAC matrix for frames {frame_idx} to {frame_idx+1}")
img1 = cv2.cvtColor(get_resized_image_from_filename(str(inputfiles[frame_idx]), dimensions), cv2.COLOR_BGR2GRAY)
img2 = cv2.cvtColor(get_resized_image_from_filename(str(inputfiles[frame_idx+1]), dimensions), cv2.COLOR_BGR2GRAY)
M = get_transformation_matrix_from_images(img1, img2, hybrid_motion)
return M
def get_matrix_for_hybrid_motion_prev(frame_idx, dimensions, inputfiles, prev_img, hybrid_motion):
print(f"Calculating {hybrid_motion} RANSAC matrix for frames {frame_idx} to {frame_idx+1}")
# first handle invalid images by returning default matrix
height, width = prev_img.shape[:2]
if height == 0 or width == 0 or prev_img != np.uint8:
return get_hybrid_motion_default_matrix(hybrid_motion)
else:
prev_img_gray = cv2.cvtColor(prev_img, cv2.COLOR_BGR2GRAY)
img = cv2.cvtColor(get_resized_image_from_filename(str(inputfiles[frame_idx+1]), dimensions), cv2.COLOR_BGR2GRAY)
M = get_transformation_matrix_from_images(prev_img_gray, img, hybrid_motion)
return M
def get_flow_for_hybrid_motion(frame_idx, dimensions, inputfiles, hybrid_frame_path, prev_flow, method, raft_model, consistency_check=True, consistency_blur=0, do_flow_visualization=False):
print(f"Calculating {method} optical flow {'w/consistency mask' if consistency_check else ''} for frames {frame_idx} to {frame_idx+1}")
i1 = get_resized_image_from_filename(str(inputfiles[frame_idx]), dimensions)
i2 = get_resized_image_from_filename(str(inputfiles[frame_idx+1]), dimensions)
if consistency_check:
flow, reliable_flow = get_reliable_flow_from_images(i1, i2, method, raft_model, prev_flow, consistency_blur) # forward flow w/backward consistency check
if do_flow_visualization: save_flow_mask_visualization(frame_idx, reliable_flow, hybrid_frame_path)
else:
flow = get_flow_from_images(i1, i2, method, raft_model, prev_flow) # old single flow forward
if do_flow_visualization: save_flow_visualization(frame_idx, dimensions, flow, inputfiles, hybrid_frame_path)
return flow
def get_flow_for_hybrid_motion_prev(frame_idx, dimensions, inputfiles, hybrid_frame_path, prev_flow, prev_img, method, raft_model, consistency_check=True, consistency_blur=0, do_flow_visualization=False):
print(f"Calculating {method} optical flow {'w/consistency mask' if consistency_check else ''} for frames {frame_idx} to {frame_idx+1}")
reliable_flow = None
# first handle invalid images by returning default flow
height, width = prev_img.shape[:2]
if height == 0 or width == 0:
flow = get_hybrid_motion_default_flow(dimensions)
else:
i1 = prev_img.astype(np.uint8)
i2 = get_resized_image_from_filename(str(inputfiles[frame_idx+1]), dimensions)
if consistency_check:
flow, reliable_flow = get_reliable_flow_from_images(i1, i2, method, raft_model, prev_flow, consistency_blur) # forward flow w/backward consistency check
if do_flow_visualization: save_flow_mask_visualization(frame_idx, reliable_flow, hybrid_frame_path)
else:
flow = get_flow_from_images(i1, i2, method, raft_model, prev_flow)
if do_flow_visualization: save_flow_visualization(frame_idx, dimensions, flow, inputfiles, hybrid_frame_path)
return flow
def get_reliable_flow_from_images(i1, i2, method, raft_model, prev_flow, consistency_blur, reliability=0):
flow_forward = get_flow_from_images(i1, i2, method, raft_model, prev_flow)
flow_backward = get_flow_from_images(i2, i1, method, raft_model, None)
reliable_flow = make_consistency(flow_forward, flow_backward, edges_unreliable=False)
if consistency_blur > 0:
reliable_flow = custom_gaussian_blur(reliable_flow.astype(np.float32), 1, consistency_blur)
return filter_flow(flow_forward, reliable_flow, consistency_blur, reliability), reliable_flow
def custom_gaussian_blur(input_array, blur_size, sigma):
return gaussian_filter(input_array, sigma=(sigma, sigma, 0), order=0, mode='constant', cval=0.0, truncate=blur_size)
def filter_flow(flow, reliable_flow, reliability=0.5, consistency_blur=0):
# reliability from reliabile flow: -0.75 is bad, 0 is meh/outside, 1 is great
# Create a mask from the first channel of the reliable_flow array
mask = reliable_flow[..., 0]
# to set everything to 1 or 0 based on reliability
# mask = np.where(mask >= reliability, 1, 0)
# Expand the mask to match the shape of the forward_flow array
mask = np.repeat(mask[..., np.newaxis], flow.shape[2], axis=2)
# Apply the mask to the flow
return flow * mask
def image_transform_ransac(image_cv2, M, hybrid_motion, depth=None):
if hybrid_motion == "Perspective":
return image_transform_perspective(image_cv2, M, depth)
else: # Affine
return image_transform_affine(image_cv2, M, depth)
def image_transform_optical_flow(img, flow, flow_factor):
# if flow factor not normal, calculate flow factor
if flow_factor != 1:
flow = flow * flow_factor
# flow is reversed, so you need to reverse it:
flow = -flow
h, w = img.shape[:2]
flow[:, :, 0] += np.arange(w)
flow[:, :, 1] += np.arange(h)[:,np.newaxis]
return remap(img, flow)
def image_transform_affine(image_cv2, M, depth=None):
if depth is None:
return cv2.warpAffine(
image_cv2,
M,
(image_cv2.shape[1],image_cv2.shape[0]),
borderMode=cv2.BORDER_REFLECT_101
)
else: # NEED TO IMPLEMENT THE FOLLOWING FUNCTION
return depth_based_affine_warp(
image_cv2,
depth,
M
)
def image_transform_perspective(image_cv2, M, depth=None):
if depth is None:
return cv2.warpPerspective(
image_cv2,
M,
(image_cv2.shape[1], image_cv2.shape[0]),
borderMode=cv2.BORDER_REFLECT_101
)
else: # NEED TO IMPLEMENT THE FOLLOWING FUNCTION
return render_3d_perspective(
image_cv2,
depth,
M
)
def get_hybrid_motion_default_matrix(hybrid_motion):
if hybrid_motion == "Perspective":
arr = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])
else:
arr = np.array([[1., 0., 0.], [0., 1., 0.]])
return arr
def get_hybrid_motion_default_flow(dimensions):
cols, rows = dimensions
flow = np.zeros((rows, cols, 2), np.float32)
return flow
def get_transformation_matrix_from_images(img1, img2, hybrid_motion, confidence=0.75):
# Create SIFT detector and feature extractor
sift = cv2.SIFT_create()
# Detect keypoints and compute descriptors
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
# Create BFMatcher object and match descriptors
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1, des2, k=2)
# Apply ratio test to filter good matches
good_matches = []
for m, n in matches:
if m.distance < confidence * n.distance:
good_matches.append(m)
if len(good_matches) <= 8:
get_hybrid_motion_default_matrix(hybrid_motion)
# Convert keypoints to numpy arrays
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
if len(src_pts) <= 8 or len(dst_pts) <= 8:
return get_hybrid_motion_default_matrix(hybrid_motion)
elif hybrid_motion == "Perspective": # Perspective transformation (3x3)
transformation_matrix, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
return transformation_matrix
else: # Affine - rigid transformation (no skew 3x2)
transformation_rigid_matrix, rigid_mask = cv2.estimateAffinePartial2D(src_pts, dst_pts)
return transformation_rigid_matrix
def get_flow_from_images(i1, i2, method, raft_model, prev_flow=None):
if method == "RAFT":
if raft_model is None:
raise Exception("RAFT Model not provided to get_flow_from_images function, cannot continue.")
return get_flow_from_images_RAFT(i1, i2, raft_model)
elif method == "DIS Medium":
return get_flow_from_images_DIS(i1, i2, 'medium', prev_flow)
elif method == "DIS Fine":
return get_flow_from_images_DIS(i1, i2, 'fine', prev_flow)
elif method == "DenseRLOF": # Unused - requires running opencv-contrib-python (full opencv) INSTEAD of opencv-python
return get_flow_from_images_Dense_RLOF(i1, i2, prev_flow)
elif method == "SF": # Unused - requires running opencv-contrib-python (full opencv) INSTEAD of opencv-python
return get_flow_from_images_SF(i1, i2, prev_flow)
elif method == "DualTVL1": # Unused - requires running opencv-contrib-python (full opencv) INSTEAD of opencv-python
return get_flow_from_images_DualTVL1(i1, i2, prev_flow)
elif method == "DeepFlow": # Unused - requires running opencv-contrib-python (full opencv) INSTEAD of opencv-python
return get_flow_from_images_DeepFlow(i1, i2, prev_flow)
elif method == "PCAFlow": # Unused - requires running opencv-contrib-python (full opencv) INSTEAD of opencv-python
return get_flow_from_images_PCAFlow(i1, i2, prev_flow)
elif method == "Farneback": # Farneback Normal:
return get_flow_from_images_Farneback(i1, i2, prev_flow)
# if we reached this point, something went wrong. raise an error:
raise RuntimeError(f"Invald flow method name: '{method}'")
def get_flow_from_images_RAFT(i1, i2, raft_model):
flow = raft_model.predict(i1, i2)
return flow
def get_flow_from_images_DIS(i1, i2, preset, prev_flow):
# DIS PRESETS CHART KEY: finest scale, grad desc its, patch size
# DIS_MEDIUM: 1, 25, 8 | DIS_FAST: 2, 16, 8 | DIS_ULTRAFAST: 2, 12, 8
if preset == 'medium': preset_code = cv2.DISOPTICAL_FLOW_PRESET_MEDIUM
elif preset == 'fast': preset_code = cv2.DISOPTICAL_FLOW_PRESET_FAST
elif preset == 'ultrafast': preset_code = cv2.DISOPTICAL_FLOW_PRESET_ULTRAFAST
elif preset in ['slow','fine']: preset_code = None
i1 = cv2.cvtColor(i1, cv2.COLOR_BGR2GRAY)
i2 = cv2.cvtColor(i2, cv2.COLOR_BGR2GRAY)
dis = cv2.DISOpticalFlow_create(preset_code)
# custom presets
if preset == 'slow':
dis.setGradientDescentIterations(192)
dis.setFinestScale(1)
dis.setPatchSize(8)
dis.setPatchStride(4)
if preset == 'fine':
dis.setGradientDescentIterations(192)
dis.setFinestScale(0)
dis.setPatchSize(8)
dis.setPatchStride(4)
return dis.calc(i1, i2, prev_flow)
def get_flow_from_images_Dense_RLOF(i1, i2, last_flow=None):
return cv2.optflow.calcOpticalFlowDenseRLOF(i1, i2, flow = last_flow)
def get_flow_from_images_SF(i1, i2, last_flow=None, layers = 3, averaging_block_size = 2, max_flow = 4):
return cv2.optflow.calcOpticalFlowSF(i1, i2, layers, averaging_block_size, max_flow)
def get_flow_from_images_DualTVL1(i1, i2, prev_flow):
i1 = cv2.cvtColor(i1, cv2.COLOR_BGR2GRAY)
i2 = cv2.cvtColor(i2, cv2.COLOR_BGR2GRAY)
f = cv2.optflow.DualTVL1OpticalFlow_create()
return f.calc(i1, i2, prev_flow)
def get_flow_from_images_DeepFlow(i1, i2, prev_flow):
i1 = cv2.cvtColor(i1, cv2.COLOR_BGR2GRAY)
i2 = cv2.cvtColor(i2, cv2.COLOR_BGR2GRAY)
f = cv2.optflow.createOptFlow_DeepFlow()
return f.calc(i1, i2, prev_flow)
def get_flow_from_images_PCAFlow(i1, i2, prev_flow):
i1 = cv2.cvtColor(i1, cv2.COLOR_BGR2GRAY)
i2 = cv2.cvtColor(i2, cv2.COLOR_BGR2GRAY)
f = cv2.optflow.createOptFlow_PCAFlow()
return f.calc(i1, i2, prev_flow)
def get_flow_from_images_Farneback(i1, i2, preset="normal", last_flow=None, pyr_scale = 0.5, levels = 3, winsize = 15, iterations = 3, poly_n = 5, poly_sigma = 1.2, flags = 0):
flags = cv2.OPTFLOW_FARNEBACK_GAUSSIAN # Specify the operation flags
pyr_scale = 0.5 # The image scale (<1) to build pyramids for each image
if preset == "fine":
levels = 13 # The number of pyramid layers, including the initial image
winsize = 77 # The averaging window size
iterations = 13 # The number of iterations at each pyramid level
poly_n = 15 # The size of the pixel neighborhood used to find polynomial expansion in each pixel
poly_sigma = 0.8 # The standard deviation of the Gaussian used to smooth derivatives used as a basis for the polynomial expansion
else: # "normal"
levels = 5 # The number of pyramid layers, including the initial image
winsize = 21 # The averaging window size
iterations = 5 # The number of iterations at each pyramid level
poly_n = 7 # The size of the pixel neighborhood used to find polynomial expansion in each pixel
poly_sigma = 1.2 # The standard deviation of the Gaussian used to smooth derivatives used as a basis for the polynomial expansion
i1 = cv2.cvtColor(i1, cv2.COLOR_BGR2GRAY)
i2 = cv2.cvtColor(i2, cv2.COLOR_BGR2GRAY)
flags = 0 # flags = cv2.OPTFLOW_USE_INITIAL_FLOW
flow = cv2.calcOpticalFlowFarneback(i1, i2, last_flow, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags)
return flow
def save_flow_visualization(frame_idx, dimensions, flow, inputfiles, hybrid_frame_path):
flow_img_file = os.path.join(hybrid_frame_path, f"flow{frame_idx:09}.jpg")
flow_img = cv2.imread(str(inputfiles[frame_idx]))
flow_img = cv2.resize(flow_img, (dimensions[0], dimensions[1]), cv2.INTER_AREA)
flow_img = cv2.cvtColor(flow_img, cv2.COLOR_RGB2GRAY)
flow_img = cv2.cvtColor(flow_img, cv2.COLOR_GRAY2BGR)
flow_img = draw_flow_lines_in_grid_in_color(flow_img, flow)
flow_img = cv2.cvtColor(flow_img, cv2.COLOR_BGR2RGB)
cv2.imwrite(flow_img_file, flow_img)
print(f"Saved optical flow visualization: {flow_img_file}")
def save_flow_mask_visualization(frame_idx, reliable_flow, hybrid_frame_path, color=True):
flow_mask_img_file = os.path.join(hybrid_frame_path, f"flow_mask{frame_idx:09}.jpg")
if color:
# Normalize the reliable_flow array to the range [0, 255]
normalized_reliable_flow = (reliable_flow - reliable_flow.min()) / (reliable_flow.max() - reliable_flow.min()) * 255
# Change the data type to np.uint8
mask_image = normalized_reliable_flow.astype(np.uint8)
else:
# Extract the first channel of the reliable_flow array
first_channel = reliable_flow[..., 0]
# Normalize the first channel to the range [0, 255]
normalized_first_channel = (first_channel - first_channel.min()) / (first_channel.max() - first_channel.min()) * 255
# Change the data type to np.uint8
grayscale_image = normalized_first_channel.astype(np.uint8)
# Replicate the grayscale channel three times to form a BGR image
mask_image = np.stack((grayscale_image, grayscale_image, grayscale_image), axis=2)
cv2.imwrite(flow_mask_img_file, mask_image)
print(f"Saved mask flow visualization: {flow_mask_img_file}")
def reliable_flow_to_image(reliable_flow):
# Extract the first channel of the reliable_flow array
first_channel = reliable_flow[..., 0]
# Normalize the first channel to the range [0, 255]
normalized_first_channel = (first_channel - first_channel.min()) / (first_channel.max() - first_channel.min()) * 255
# Change the data type to np.uint8
grayscale_image = normalized_first_channel.astype(np.uint8)
# Replicate the grayscale channel three times to form a BGR image
bgr_image = np.stack((grayscale_image, grayscale_image, grayscale_image), axis=2)
return bgr_image
def draw_flow_lines_in_grid_in_color(img, flow, step=8, magnitude_multiplier=1, min_magnitude = 0, max_magnitude = 10000):
flow = flow * magnitude_multiplier
h, w = img.shape[:2]
y, x = np.mgrid[step/2:h:step, step/2:w:step].reshape(2,-1).astype(int)
fx, fy = flow[y,x].T
lines = np.vstack([x, y, x+fx, y+fy]).T.reshape(-1, 2, 2)
lines = np.int32(lines + 0.5)
vis = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
vis = cv2.cvtColor(vis, cv2.COLOR_GRAY2BGR)
mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1])
hsv = np.zeros((flow.shape[0], flow.shape[1], 3), dtype=np.uint8)
hsv[...,0] = ang*180/np.pi/2
hsv[...,1] = 255
hsv[...,2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
vis = cv2.add(vis, bgr)
# Iterate through the lines
for (x1, y1), (x2, y2) in lines:
# Calculate the magnitude of the line
magnitude = np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
# Only draw the line if it falls within the magnitude range
if min_magnitude <= magnitude <= max_magnitude:
b = int(bgr[y1, x1, 0])
g = int(bgr[y1, x1, 1])
r = int(bgr[y1, x1, 2])
color = (b, g, r)
cv2.arrowedLine(vis, (x1, y1), (x2, y2), color, thickness=1, tipLength=0.1)
return vis
def draw_flow_lines_in_color(img, flow, threshold=3, magnitude_multiplier=1, min_magnitude = 0, max_magnitude = 10000):
# h, w = img.shape[:2]
vis = img.copy() # Create a copy of the input image
# Find the locations in the flow field where the magnitude of the flow is greater than the threshold
mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1])
idx = np.where(mag > threshold)
# Create HSV image
hsv = np.zeros((flow.shape[0], flow.shape[1], 3), dtype=np.uint8)
hsv[...,0] = ang*180/np.pi/2
hsv[...,1] = 255
hsv[...,2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
# Convert HSV image to BGR
bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
# Add color from bgr
vis = cv2.add(vis, bgr)
# Draw an arrow at each of these locations to indicate the direction of the flow
for i, (y, x) in enumerate(zip(idx[0], idx[1])):
# Calculate the magnitude of the line
x2 = x + magnitude_multiplier * int(flow[y, x, 0])
y2 = y + magnitude_multiplier * int(flow[y, x, 1])
magnitude = np.sqrt((x2 - x)**2 + (y2 - y)**2)
# Only draw the line if it falls within the magnitude range
if min_magnitude <= magnitude <= max_magnitude:
if i % random.randint(100, 200) == 0:
b = int(bgr[y, x, 0])
g = int(bgr[y, x, 1])
r = int(bgr[y, x, 2])
color = (b, g, r)
cv2.arrowedLine(vis, (x, y), (x2, y2), color, thickness=1, tipLength=0.25)
return vis
def autocontrast_grayscale(image, low_cutoff=0, high_cutoff=100):
# Perform autocontrast on a grayscale np array image.
# Find the minimum and maximum values in the image
min_val = np.percentile(image, low_cutoff)
max_val = np.percentile(image, high_cutoff)
# Scale the image so that the minimum value is 0 and the maximum value is 255
image = 255 * (image - min_val) / (max_val - min_val)
# Clip values that fall outside the range [0, 255]
image = np.clip(image, 0, 255)
return image
def get_resized_image_from_filename(im, dimensions):
img = cv2.imread(im)
return cv2.resize(img, (dimensions[0], dimensions[1]), cv2.INTER_AREA)
def remap(img, flow):
border_mode = cv2.BORDER_REFLECT_101
h, w = img.shape[:2]
displacement = int(h * 0.25), int(w * 0.25)
larger_img = cv2.copyMakeBorder(img, displacement[0], displacement[0], displacement[1], displacement[1], border_mode)
lh, lw = larger_img.shape[:2]
larger_flow = extend_flow(flow, lw, lh)
remapped_img = cv2.remap(larger_img, larger_flow, None, cv2.INTER_LINEAR, border_mode)
output_img = center_crop_image(remapped_img, w, h)
return output_img
def center_crop_image(img, w, h):
y, x, _ = img.shape
width_indent = int((x - w) / 2)
height_indent = int((y - h) / 2)
cropped_img = img[height_indent:y-height_indent, width_indent:x-width_indent]
return cropped_img
def extend_flow(flow, w, h):
# Get the shape of the original flow image
flow_h, flow_w = flow.shape[:2]
# Calculate the position of the image in the new image
x_offset = int((w - flow_w) / 2)
y_offset = int((h - flow_h) / 2)
# Generate the X and Y grids
x_grid, y_grid = np.meshgrid(np.arange(w), np.arange(h))
# Create the new flow image and set it to the X and Y grids
new_flow = np.dstack((x_grid, y_grid)).astype(np.float32)
# Shift the values of the original flow by the size of the border
flow[:,:,0] += x_offset
flow[:,:,1] += y_offset
# Overwrite the middle of the grid with the original flow
new_flow[y_offset:y_offset+flow_h, x_offset:x_offset+flow_w, :] = flow
# Return the extended image
return new_flow
def abs_flow_to_rel_flow(flow, width, height):
fx, fy = flow[:,:,0], flow[:,:,1]
max_flow_x = np.max(np.abs(fx))
max_flow_y = np.max(np.abs(fy))
max_flow = max(max_flow_x, max_flow_y)
rel_fx = fx / (max_flow * width)
rel_fy = fy / (max_flow * height)
return np.dstack((rel_fx, rel_fy))
def rel_flow_to_abs_flow(rel_flow, width, height):
rel_fx, rel_fy = rel_flow[:,:,0], rel_flow[:,:,1]
max_flow_x = np.max(np.abs(rel_fx * width))
max_flow_y = np.max(np.abs(rel_fy * height))
max_flow = max(max_flow_x, max_flow_y)
fx = rel_fx * (max_flow * width)
fy = rel_fy * (max_flow * height)
return np.dstack((fx, fy))
|