File size: 16,866 Bytes
81f4d3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
# Copyright (C) 2023 Deforum LLC
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, version 3 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# Contact the authors: https://deforum.github.io/
from PIL import Image
import math
import json
import itertools
import requests
import numexpr
from modules import processing, sd_models
from modules.shared import sd_model, state, cmd_opts
from .deforum_controlnet import is_controlnet_enabled, process_with_controlnet
from .prompt import split_weighted_subprompts
from .load_images import load_img, prepare_mask, check_mask_for_errors
from .webui_sd_pipeline import get_webui_sd_pipeline
from .rich import console
from .defaults import get_samplers_list
from .prompt import check_is_number
import cv2
import numpy as np
from types import SimpleNamespace
from .general_utils import debug_print
def load_mask_latent(mask_input, shape):
# mask_input (str or PIL Image.Image): Path to the mask image or a PIL Image object
# shape (list-like len(4)): shape of the image to match, usually latent_image.shape
if isinstance(mask_input, str): # mask input is probably a file name
if mask_input.startswith('http://') or mask_input.startswith('https://'):
mask_image = Image.open(requests.get(mask_input, stream=True).raw).convert('RGBA')
else:
mask_image = Image.open(mask_input).convert('RGBA')
elif isinstance(mask_input, Image.Image):
mask_image = mask_input
else:
raise Exception("mask_input must be a PIL image or a file name")
mask_w_h = (shape[-1], shape[-2])
mask = mask_image.resize(mask_w_h, resample=Image.LANCZOS)
mask = mask.convert("L")
return mask
def isJson(myjson):
try:
json.loads(myjson)
except ValueError as e:
return False
return True
# Add pairwise implementation here not to upgrade
# the whole python to 3.10 just for one function
def pairwise_repl(iterable):
a, b = itertools.tee(iterable)
next(b, None)
return zip(a, b)
def generate(args, keys, anim_args, loop_args, controlnet_args, root, parseq_adapter, frame=0, sampler_name=None):
if state.interrupted:
return None
if args.reroll_blank_frames == 'ignore':
return generate_inner(args, keys, anim_args, loop_args, controlnet_args, root, parseq_adapter, frame, sampler_name)
image, caught_vae_exception = generate_with_nans_check(args, keys, anim_args, loop_args, controlnet_args, root, parseq_adapter, frame, sampler_name)
if caught_vae_exception or not image.getbbox():
patience = args.reroll_patience
print("Blank frame detected! If you don't have the NSFW filter enabled, this may be due to a glitch!")
if args.reroll_blank_frames == 'reroll':
while caught_vae_exception or not image.getbbox():
print("Rerolling with +1 seed...")
args.seed += 1
image, caught_vae_exception = generate_with_nans_check(args, keys, anim_args, loop_args, controlnet_args, root, parseq_adapter, frame, sampler_name)
patience -= 1
if patience == 0:
print("Rerolling with +1 seed failed for 10 iterations! Try setting webui's precision to 'full' and if it fails, please report this to the devs! Interrupting...")
state.interrupted = True
state.assign_current_image(image)
return None
elif args.reroll_blank_frames == 'interrupt':
print("Interrupting to save your eyes...")
state.interrupted = True
state.assign_current_image(image)
return None
return image
def generate_with_nans_check(args, keys, anim_args, loop_args, controlnet_args, root, parseq_adapter, frame=0, sampler_name=None):
if cmd_opts.disable_nan_check:
image = generate_inner(args, keys, anim_args, loop_args, controlnet_args, root, parseq_adapter, frame, sampler_name)
else:
try:
image = generate_inner(args, keys, anim_args, loop_args, controlnet_args, root, parseq_adapter, frame, sampler_name)
except Exception as e:
if "A tensor with all NaNs was produced in VAE." in repr(e):
print(e)
return None, True
else:
raise e
return image, False
def generate_inner(args, keys, anim_args, loop_args, controlnet_args, root, parseq_adapter, frame=0, sampler_name=None):
# Setup the pipeline
p = get_webui_sd_pipeline(args, root)
p.prompt, p.negative_prompt = split_weighted_subprompts(args.prompt, frame, anim_args.max_frames)
if not args.use_init and args.strength > 0 and args.strength_0_no_init:
args.strength = 0
processed = None
mask_image = None
init_image = None
image_init0 = None
image_init0_box = None
if loop_args.use_looper and anim_args.animation_mode in ['2D', '3D']:
debug_print(f"Looper: use_looper={loop_args.use_looper}, imageStrength={loop_args.imageStrength}, blendFactorMax={loop_args.blendFactorMax}, blendFactorSlope={loop_args.blendFactorSlope}, tweeningFrames={loop_args.tweeningFrameSchedule}, colorCorrectionFactor={loop_args.colorCorrectionFactor}")
args.strength = loop_args.imageStrength
tweeningFrames = loop_args.tweeningFrameSchedule
blendFactor = .07
colorCorrectionFactor = loop_args.colorCorrectionFactor
jsonImages = json.loads(loop_args.imagesToKeyframe)
# find which image to show
parsedImages = {}
frameToChoose = 0
max_f = anim_args.max_frames - 1
for key, value in jsonImages.items():
if check_is_number(key): # default case 0:(1 + t %5), 30:(5-t%2)
parsedImages[key] = value
else: # math on the left hand side case 0:(1 + t %5), maxKeyframes/2:(5-t%2)
parsedImages[int(numexpr.evaluate(key))] = value
framesToImageSwapOn = list(map(int, list(parsedImages.keys())))
for swappingFrame in framesToImageSwapOn[1:]:
frameToChoose += (frame >= int(swappingFrame))
# find which frame to do our swapping on for tweening
skipFrame = 25
for fs, fe in pairwise_repl(framesToImageSwapOn):
if fs <= frame <= fe:
skipFrame = fe - fs
if frame % skipFrame <= tweeningFrames: # number of tweening frames
blendFactor = loop_args.blendFactorMax - loop_args.blendFactorSlope * math.cos((frame % tweeningFrames) / (tweeningFrames / 2))
init_image2, _ = load_img(list(jsonImages.values())[frameToChoose],
None, # init_image_box not used in this case
shape=(args.W, args.H),
use_alpha_as_mask=args.use_alpha_as_mask)
image_init0 = list(jsonImages.values())[0]
else: # they passed in a single init image
image_init0 = args.init_image
image_init0_box = args.init_image_box
available_samplers = get_samplers_list()
if sampler_name is not None:
if sampler_name in available_samplers.keys():
p.sampler_name = available_samplers[sampler_name]
else:
raise RuntimeError(f"Sampler name '{sampler_name}' is invalid. Please check the available sampler list in the 'Run' tab")
if args.checkpoint is not None:
info = sd_models.get_closet_checkpoint_match(args.checkpoint)
if info is None:
raise RuntimeError(f"Unknown checkpoint: {args.checkpoint}")
sd_models.reload_model_weights(info=info)
if root.init_sample is not None:
# TODO: cleanup init_sample remains later
img = root.init_sample
init_image = img
if loop_args.use_looper and isJson(loop_args.imagesToKeyframe) and anim_args.animation_mode in ['2D', '3D']:
init_image = Image.blend(init_image, init_image2, blendFactor)
correction_colors = Image.blend(init_image, init_image2, colorCorrectionFactor)
p.color_corrections = [processing.setup_color_correction(correction_colors)]
# this is the first pass
elif (loop_args.use_looper and anim_args.animation_mode in ['2D', '3D']) or (args.use_init and ((args.init_image != None and args.init_image != '') or args.init_image_box != None)):
init_image, mask_image = load_img(image_init0, # initial init image
image_init0_box, # initial init image from box (if single init image is used, not json list)
shape=(args.W, args.H),
use_alpha_as_mask=args.use_alpha_as_mask)
else:
if anim_args.animation_mode != 'Interpolation':
print(f"Not using an init image (doing pure txt2img)")
if args.motion_preview_mode:
state.assign_current_image(root.default_img)
processed = SimpleNamespace(images = [root.default_img], info = "Generating motion preview...")
else:
p_txt = processing.StableDiffusionProcessingTxt2Img(
sd_model=sd_model,
outpath_samples=root.tmp_deforum_run_duplicated_folder,
outpath_grids=root.tmp_deforum_run_duplicated_folder,
prompt=p.prompt,
styles=p.styles,
negative_prompt=p.negative_prompt,
seed=p.seed,
subseed=p.subseed,
subseed_strength=p.subseed_strength,
seed_resize_from_h=p.seed_resize_from_h,
seed_resize_from_w=p.seed_resize_from_w,
sampler_name=p.sampler_name,
batch_size=p.batch_size,
n_iter=p.n_iter,
steps=p.steps,
cfg_scale=p.cfg_scale,
width=p.width,
height=p.height,
restore_faces=p.restore_faces,
tiling=p.tiling,
enable_hr=False,
denoising_strength=0,
)
print_combined_table(args, anim_args, p_txt, keys, frame) # print dynamic table to cli
if is_controlnet_enabled(controlnet_args):
process_with_controlnet(p_txt, args, anim_args, controlnet_args, root, parseq_adapter, is_img2img=False, frame_idx=frame)
processed = processing.process_images(p_txt)
try:
p_txt.close()
except Exception as e:
...
if processed is None:
# Mask functions
if args.use_mask:
mask_image = args.mask_image
mask = prepare_mask(args.mask_file if mask_image is None else mask_image,
(args.W, args.H),
args.mask_contrast_adjust,
args.mask_brightness_adjust)
p.inpainting_mask_invert = args.invert_mask
p.inpainting_fill = args.fill
p.inpaint_full_res = args.full_res_mask
p.inpaint_full_res_padding = args.full_res_mask_padding
# prevent loaded mask from throwing errors in Image operations if completely black and crop and resize in webui pipeline
# doing this after contrast and brightness adjustments to ensure that mask is not passed as black or blank
mask = check_mask_for_errors(mask, args.invert_mask)
root.noise_mask = mask
else:
mask = None
assert not ((mask is not None and args.use_mask and args.overlay_mask) and (
root.init_sample is None and init_image is None)), "Need an init image when use_mask == True and overlay_mask == True"
p.init_images = [init_image]
p.image_mask = mask
p.image_cfg_scale = args.pix2pix_img_cfg_scale
print_combined_table(args, anim_args, p, keys, frame) # print dynamic table to cli
if args.motion_preview_mode:
processed = mock_process_images(args, p, init_image)
else:
if is_controlnet_enabled(controlnet_args):
process_with_controlnet(p, args, anim_args, controlnet_args, root, parseq_adapter, is_img2img=True, frame_idx=frame)
processed = processing.process_images(p)
if root.initial_info is None:
root.initial_info = processed.info
if root.first_frame is None:
root.first_frame = processed.images[0]
results = processed.images[0]
return results
# Run this instead of actual diffusion when doing motion preview.
def mock_process_images(args, p, init_image):
input_image = cv2.cvtColor(np.array(init_image), cv2.COLOR_RGB2BGR)
start_point = (int(args.H/3), int(args.W/3))
end_point = (int(args.H-args.H/3), int(args.W-args.W/3))
color = (255, 255, 255, float(p.denoising_strength))
thickness = 2
mock_generated_image = np.zeros_like(input_image, np.uint8)
cv2.rectangle(mock_generated_image, start_point, end_point, color, thickness)
blend = cv2.addWeighted(input_image, float(1.0-p.denoising_strength), mock_generated_image, float(p.denoising_strength), 0)
image = Image.fromarray(cv2.cvtColor(blend, cv2.COLOR_BGR2RGB))
state.assign_current_image(image)
return SimpleNamespace(images = [image], info = "Generating motion preview...")
def print_combined_table(args, anim_args, p, keys, frame_idx):
from rich.table import Table
from rich import box
table = Table(padding=0, box=box.ROUNDED)
field_names1 = ["Steps", "CFG"]
if anim_args.animation_mode != 'Interpolation':
field_names1.append("Denoise")
field_names1 += ["Subseed", "Subs. str"] * (anim_args.enable_subseed_scheduling)
field_names1 += ["Sampler"] * anim_args.enable_sampler_scheduling
field_names1 += ["Checkpoint"] * anim_args.enable_checkpoint_scheduling
for field_name in field_names1:
table.add_column(field_name, justify="center")
rows1 = [str(p.steps), str(p.cfg_scale)]
if anim_args.animation_mode != 'Interpolation':
rows1.append(f"{p.denoising_strength:.5g}" if p.denoising_strength is not None else "None")
rows1 += [str(p.subseed), f"{p.subseed_strength:.5g}"] * anim_args.enable_subseed_scheduling
rows1 += [p.sampler_name] * anim_args.enable_sampler_scheduling
rows1 += [str(args.checkpoint)] * anim_args.enable_checkpoint_scheduling
rows2 = []
if anim_args.animation_mode not in ['Video Input', 'Interpolation']:
if anim_args.animation_mode == '2D':
field_names2 = ["Angle", "Zoom", "Tr C X", "Tr C Y"]
else:
field_names2 = []
field_names2 += ["Tr X", "Tr Y"]
if anim_args.animation_mode == '3D':
field_names2 += ["Tr Z", "Ro X", "Ro Y", "Ro Z"]
if anim_args.aspect_ratio_schedule.replace(" ", "") != '0:(1)':
field_names2 += ["Asp. Ratio"]
if anim_args.enable_perspective_flip:
field_names2 += ["Pf T", "Pf P", "Pf G", "Pf F"]
for field_name in field_names2:
table.add_column(field_name, justify="center")
if anim_args.animation_mode == '2D':
rows2 += [f"{keys.angle_series[frame_idx]:.5g}", f"{keys.zoom_series[frame_idx]:.5g}",
f"{keys.transform_center_x_series[frame_idx]:.5g}", f"{keys.transform_center_y_series[frame_idx]:.5g}"]
rows2 += [f"{keys.translation_x_series[frame_idx]:.5g}", f"{keys.translation_y_series[frame_idx]:.5g}"]
if anim_args.animation_mode == '3D':
rows2 += [f"{keys.translation_z_series[frame_idx]:.5g}", f"{keys.rotation_3d_x_series[frame_idx]:.5g}",
f"{keys.rotation_3d_y_series[frame_idx]:.5g}", f"{keys.rotation_3d_z_series[frame_idx]:.5g}"]
if anim_args.aspect_ratio_schedule.replace(" ", "") != '0:(1)':
rows2 += [f"{keys.aspect_ratio_series[frame_idx]:.5g}"]
if anim_args.enable_perspective_flip:
rows2 += [f"{keys.perspective_flip_theta_series[frame_idx]:.5g}", f"{keys.perspective_flip_phi_series[frame_idx]:.5g}",
f"{keys.perspective_flip_gamma_series[frame_idx]:.5g}", f"{keys.perspective_flip_fv_series[frame_idx]:.5g}"]
table.add_row(*rows1, *rows2)
console.print(table)
|