File size: 18,605 Bytes
81f4d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# Copyright (C) 2023 Deforum LLC
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, version 3 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.

# Contact the authors: https://deforum.github.io/

import numpy as np
import cv2
import py3d_tools as p3d # this is actually a file in our /src folder!
from functools import reduce
import math
import torch
from einops import rearrange
from modules.shared import state, opts
from .prompt import check_is_number
from .general_utils import debug_print

def sample_from_cv2(sample: np.ndarray) -> torch.Tensor:
    sample = ((sample.astype(float) / 255.0) * 2) - 1
    sample = sample[None].transpose(0, 3, 1, 2).astype(np.float16)
    sample = torch.from_numpy(sample)
    return sample

def sample_to_cv2(sample: torch.Tensor, type=np.uint8) -> np.ndarray:
    sample_f32 = rearrange(sample.squeeze().cpu().numpy(), "c h w -> h w c").astype(np.float32)
    sample_f32 = ((sample_f32 * 0.5) + 0.5).clip(0, 1)
    sample_int8 = (sample_f32 * 255)
    return sample_int8.astype(type)

def construct_RotationMatrixHomogenous(rotation_angles):
    assert(type(rotation_angles)==list and len(rotation_angles)==3)
    RH = np.eye(4,4)
    cv2.Rodrigues(np.array(rotation_angles), RH[0:3, 0:3])
    return RH

# https://en.wikipedia.org/wiki/Rotation_matrix
def getRotationMatrixManual(rotation_angles):
	
    rotation_angles = [np.deg2rad(x) for x in rotation_angles]
    
    phi         = rotation_angles[0] # around x
    gamma       = rotation_angles[1] # around y
    theta       = rotation_angles[2] # around z
    
    # X rotation
    Rphi        = np.eye(4,4)
    sp          = np.sin(phi)
    cp          = np.cos(phi)
    Rphi[1,1]   = cp
    Rphi[2,2]   = Rphi[1,1]
    Rphi[1,2]   = -sp
    Rphi[2,1]   = sp
    
    # Y rotation
    Rgamma        = np.eye(4,4)
    sg            = np.sin(gamma)
    cg            = np.cos(gamma)
    Rgamma[0,0]   = cg
    Rgamma[2,2]   = Rgamma[0,0]
    Rgamma[0,2]   = sg
    Rgamma[2,0]   = -sg
    
    # Z rotation (in-image-plane)
    Rtheta      = np.eye(4,4)
    st          = np.sin(theta)
    ct          = np.cos(theta)
    Rtheta[0,0] = ct
    Rtheta[1,1] = Rtheta[0,0]
    Rtheta[0,1] = -st
    Rtheta[1,0] = st
    
    R           = reduce(lambda x,y : np.matmul(x,y), [Rphi, Rgamma, Rtheta]) 
    
    return R

def getPoints_for_PerspectiveTranformEstimation(ptsIn, ptsOut, W, H, sidelength):
    
    ptsIn2D      =  ptsIn[0,:]
    ptsOut2D     =  ptsOut[0,:]
    ptsOut2Dlist =  []
    ptsIn2Dlist  =  []
    
    for i in range(0,4):
        ptsOut2Dlist.append([ptsOut2D[i,0], ptsOut2D[i,1]])
        ptsIn2Dlist.append([ptsIn2D[i,0], ptsIn2D[i,1]])
    
    pin  =  np.array(ptsIn2Dlist)   +  [W/2.,H/2.]
    pout = (np.array(ptsOut2Dlist)  +  [1.,1.]) * (0.5*sidelength)
    pin  = pin.astype(np.float32)
    pout = pout.astype(np.float32)
    
    return pin, pout


def warpMatrix(W, H, theta, phi, gamma, scale, fV):
    
    # M is to be estimated
    M          = np.eye(4, 4)
    
    fVhalf     = np.deg2rad(fV/2.)
    d          = np.sqrt(W*W+H*H)
    sideLength = scale*d/np.cos(fVhalf)
    h          = d/(2.0*np.sin(fVhalf))
    n          = h-(d/2.0)
    f          = h+(d/2.0)
    
    # Translation along Z-axis by -h
    T       = np.eye(4,4)
    T[2,3]  = -h
    
    # Rotation matrices around x,y,z
    R = getRotationMatrixManual([phi, gamma, theta])
    
    
    # Projection Matrix 
    P       = np.eye(4,4)
    P[0,0]  = 1.0/np.tan(fVhalf)
    P[1,1]  = P[0,0]
    P[2,2]  = -(f+n)/(f-n)
    P[2,3]  = -(2.0*f*n)/(f-n)
    P[3,2]  = -1.0
    
    # pythonic matrix multiplication
    F       = reduce(lambda x,y : np.matmul(x,y), [P, T, R]) 
    
    # shape should be 1,4,3 for ptsIn and ptsOut since perspectiveTransform() expects data in this way. 
    # In C++, this can be achieved by Mat ptsIn(1,4,CV_64FC3);
    ptsIn = np.array([[
                 [-W/2., H/2., 0.],[ W/2., H/2., 0.],[ W/2.,-H/2., 0.],[-W/2.,-H/2., 0.]
                 ]])
    ptsOut  = np.array(np.zeros((ptsIn.shape), dtype=ptsIn.dtype))
    ptsOut  = cv2.perspectiveTransform(ptsIn, F)
    
    ptsInPt2f, ptsOutPt2f = getPoints_for_PerspectiveTranformEstimation(ptsIn, ptsOut, W, H, sideLength)
    
    # check float32 otherwise OpenCV throws an error
    assert(ptsInPt2f.dtype  == np.float32)
    assert(ptsOutPt2f.dtype == np.float32)
    M33 = cv2.getPerspectiveTransform(ptsInPt2f,ptsOutPt2f)

    return M33, sideLength

def get_flip_perspective_matrix(W, H, keys, frame_idx):
    perspective_flip_theta = keys.perspective_flip_theta_series[frame_idx]
    perspective_flip_phi = keys.perspective_flip_phi_series[frame_idx]
    perspective_flip_gamma = keys.perspective_flip_gamma_series[frame_idx]
    perspective_flip_fv = keys.perspective_flip_fv_series[frame_idx]
    M,sl = warpMatrix(W, H, perspective_flip_theta, perspective_flip_phi, perspective_flip_gamma, 1., perspective_flip_fv);
    post_trans_mat = np.float32([[1, 0, (W-sl)/2], [0, 1, (H-sl)/2]])
    post_trans_mat = np.vstack([post_trans_mat, [0,0,1]])
    bM = np.matmul(M, post_trans_mat)
    return bM

def flip_3d_perspective(anim_args, prev_img_cv2, keys, frame_idx):
    W, H = (prev_img_cv2.shape[1], prev_img_cv2.shape[0])
    return cv2.warpPerspective(
        prev_img_cv2,
        get_flip_perspective_matrix(W, H, keys, frame_idx),
        (W, H),
        borderMode=cv2.BORDER_WRAP if anim_args.border == 'wrap' else cv2.BORDER_REPLICATE
    )

def anim_frame_warp(prev_img_cv2, args, anim_args, keys, frame_idx, depth_model=None, depth=None, device='cuda', half_precision = False):

    if anim_args.use_depth_warping:
        if depth is None and depth_model is not None:
            depth = depth_model.predict(prev_img_cv2, anim_args.midas_weight, half_precision)
            
    else:
        depth = None

    if anim_args.animation_mode == '2D':
        prev_img = anim_frame_warp_2d(prev_img_cv2, args, anim_args, keys, frame_idx)
    else: # '3D'
        prev_img = anim_frame_warp_3d(device, prev_img_cv2, depth, anim_args, keys, frame_idx)
                
    return prev_img, depth

def anim_frame_warp_2d(prev_img_cv2, args, anim_args, keys, frame_idx):
    angle = keys.angle_series[frame_idx]
    zoom = keys.zoom_series[frame_idx]
    translation_x = keys.translation_x_series[frame_idx]
    translation_y = keys.translation_y_series[frame_idx]
    transform_center_x = keys.transform_center_x_series[frame_idx]
    transform_center_y = keys.transform_center_y_series[frame_idx]
    center_point = (args.W * transform_center_x, args.H * transform_center_y)
    rot_mat = cv2.getRotationMatrix2D(center_point, angle, zoom)
    trans_mat = np.float32([[1, 0, translation_x], [0, 1, translation_y]])
    trans_mat = np.vstack([trans_mat, [0,0,1]])
    rot_mat = np.vstack([rot_mat, [0,0,1]])
    if anim_args.enable_perspective_flip:
        bM = get_flip_perspective_matrix(args.W, args.H, keys, frame_idx)
        rot_mat = np.matmul(bM, rot_mat, trans_mat)
    else:
        rot_mat = np.matmul(rot_mat, trans_mat)
    return cv2.warpPerspective(
        prev_img_cv2,
        rot_mat,
        (prev_img_cv2.shape[1], prev_img_cv2.shape[0]),
        borderMode=cv2.BORDER_WRAP if anim_args.border == 'wrap' else cv2.BORDER_REPLICATE
    )

def anim_frame_warp_3d(device, prev_img_cv2, depth, anim_args, keys, frame_idx):
    TRANSLATION_SCALE = 1.0/200.0 # matches Disco
    translate_xyz = [
        -keys.translation_x_series[frame_idx] * TRANSLATION_SCALE, 
        keys.translation_y_series[frame_idx] * TRANSLATION_SCALE, 
        -keys.translation_z_series[frame_idx] * TRANSLATION_SCALE
    ]
    rotate_xyz = [
        math.radians(keys.rotation_3d_x_series[frame_idx]), 
        math.radians(keys.rotation_3d_y_series[frame_idx]), 
        math.radians(keys.rotation_3d_z_series[frame_idx])
    ]
    if anim_args.enable_perspective_flip:
        prev_img_cv2 = flip_3d_perspective(anim_args, prev_img_cv2, keys, frame_idx)
    rot_mat = p3d.euler_angles_to_matrix(torch.tensor(rotate_xyz, device=device), "XYZ").unsqueeze(0)
    result = transform_image_3d_switcher(device if not device.type.startswith('mps') else torch.device('cpu'), prev_img_cv2, depth, rot_mat, translate_xyz, anim_args, keys, frame_idx)
    torch.cuda.empty_cache()
    return result

def transform_image_3d_switcher(device, prev_img_cv2, depth_tensor, rot_mat, translate, anim_args, keys, frame_idx):
    if anim_args.depth_algorithm.lower() in ['midas+adabins (old)', 'zoe+adabins (old)']:
        return transform_image_3d_legacy(device, prev_img_cv2, depth_tensor, rot_mat, translate, anim_args, keys, frame_idx)
    else:
        return transform_image_3d_new(device, prev_img_cv2, depth_tensor, rot_mat, translate, anim_args, keys, frame_idx)

def transform_image_3d_legacy(device, prev_img_cv2, depth_tensor, rot_mat, translate, anim_args, keys, frame_idx):
    # adapted and optimized version of transform_image_3d from Disco Diffusion https://github.com/alembics/disco-diffusion 
    w, h = prev_img_cv2.shape[1], prev_img_cv2.shape[0]

    if anim_args.aspect_ratio_use_old_formula:
        aspect_ratio = float(w)/float(h)
    else:
        aspect_ratio = keys.aspect_ratio_series[frame_idx]
    
    near = keys.near_series[frame_idx]
    far = keys.far_series[frame_idx]
    fov_deg = keys.fov_series[frame_idx]
    persp_cam_old = p3d.FoVPerspectiveCameras(near, far, aspect_ratio, fov=fov_deg, degrees=True, device=device)
    persp_cam_new = p3d.FoVPerspectiveCameras(near, far, aspect_ratio, fov=fov_deg, degrees=True, R=rot_mat, T=torch.tensor([translate]), device=device)

    # range of [-1,1] is important to torch grid_sample's padding handling
    y,x = torch.meshgrid(torch.linspace(-1.,1.,h,dtype=torch.float32,device=device),torch.linspace(-1.,1.,w,dtype=torch.float32,device=device))
    if depth_tensor is None:
        z = torch.ones_like(x)
    else:
        z = torch.as_tensor(depth_tensor, dtype=torch.float32, device=device)
    xyz_old_world = torch.stack((x.flatten(), y.flatten(), z.flatten()), dim=1)

    xyz_old_cam_xy = persp_cam_old.get_full_projection_transform().transform_points(xyz_old_world)[:,0:2]
    xyz_new_cam_xy = persp_cam_new.get_full_projection_transform().transform_points(xyz_old_world)[:,0:2]

    offset_xy = xyz_new_cam_xy - xyz_old_cam_xy
    # affine_grid theta param expects a batch of 2D mats. Each is 2x3 to do rotation+translation.
    identity_2d_batch = torch.tensor([[1.,0.,0.],[0.,1.,0.]], device=device).unsqueeze(0)
    # coords_2d will have shape (N,H,W,2).. which is also what grid_sample needs.
    coords_2d = torch.nn.functional.affine_grid(identity_2d_batch, [1,1,h,w], align_corners=False)
    offset_coords_2d = coords_2d - torch.reshape(offset_xy, (h,w,2)).unsqueeze(0)

    image_tensor = rearrange(torch.from_numpy(prev_img_cv2.astype(np.float32)), 'h w c -> c h w').to(device)
    new_image = torch.nn.functional.grid_sample(
        image_tensor.add(1/512 - 0.0001).unsqueeze(0), 
        offset_coords_2d, 
        mode=anim_args.sampling_mode, 
        padding_mode=anim_args.padding_mode, 
        align_corners=False
    )

    # convert back to cv2 style numpy array
    result = rearrange(
        new_image.squeeze().clamp(0,255), 
        'c h w -> h w c'
    ).cpu().numpy().astype(prev_img_cv2.dtype)
    return result

def transform_image_3d_new(device, prev_img_cv2, depth_tensor, rot_mat, translate, anim_args, keys, frame_idx):
    '''
    originally an adapted and optimized version of transform_image_3d from Disco Diffusion https://github.com/alembics/disco-diffusion
    modified by reallybigname to control various incoming tensors
    '''
    if anim_args.depth_algorithm.lower().startswith('midas'): # 'Midas-3-Hybrid' or 'Midas-3.1-BeitLarge'
        depth = 1
        depth_factor = -1
        depth_offset = -2
    elif anim_args.depth_algorithm.lower() == "adabins":
        depth = 1
        depth_factor = 1
        depth_offset = 1
    elif anim_args.depth_algorithm.lower() == "leres":
        depth = 1
        depth_factor = 1
        depth_offset = 1
    elif anim_args.depth_algorithm.lower() == "zoe":
        depth = 1
        depth_factor = 1
        depth_offset = 1
    else:
        raise Exception(f"Unknown depth_algorithm passed to transform_image_3d function: {anim_args.depth_algorithm}")

    w, h = prev_img_cv2.shape[1], prev_img_cv2.shape[0]

    # depth stretching aspect ratio (has nothing to do with image dimensions - which is why the old formula was flawed)
    aspect_ratio = float(w)/float(h) if anim_args.aspect_ratio_use_old_formula else keys.aspect_ratio_series[frame_idx]
    
    # get projection keys
    near = keys.near_series[frame_idx]
    far = keys.far_series[frame_idx]
    fov_deg = keys.fov_series[frame_idx]

    # get perspective cams old (still) and new (transformed)
    persp_cam_old = p3d.FoVPerspectiveCameras(near, far, aspect_ratio, fov=fov_deg, degrees=True, device=device)
    persp_cam_new = p3d.FoVPerspectiveCameras(near, far, aspect_ratio, fov=fov_deg, degrees=True, R=rot_mat, T=torch.tensor([translate]), device=device)

    # make xy meshgrid - range of [-1,1] is important to torch grid_sample's padding handling
    y,x = torch.meshgrid(torch.linspace(-1.,1.,h,dtype=torch.float32,device=device),torch.linspace(-1.,1.,w,dtype=torch.float32,device=device))

    # test tensor for validity (some are corrupted for some reason)
    depth_tensor_invalid = depth_tensor is None or torch.isnan(depth_tensor).any() or torch.isinf(depth_tensor).any() or depth_tensor.min() == depth_tensor.max()
    
    if depth_tensor is not None:
        debug_print(f"Depth_T.min: {depth_tensor.min()}, Depth_T.max: {depth_tensor.max()}")
    # if invalid, create flat z for this frame
    if depth_tensor_invalid:
        # if none, then 3D depth is turned off, so no warning is needed.
        if depth_tensor is not None:
            print("Depth tensor invalid. Generating a Flat depth for this frame.")
        # create flat depth
        z = torch.ones_like(x)
    # create z from depth tensor
    else:
        # prepare tensor between 0 and 1 with optional equalization and autocontrast
        depth_normalized = prepare_depth_tensor(depth_tensor)

        # Rescale the depth values to depth with offset (depth 2 and offset -1 would be -1 to +11)
        depth_final = depth_normalized * depth + depth_offset

        # depth factor (1 is normal. -1 is inverted)
        if depth_factor != 1:
            depth_final *= depth_factor
        
        # console reporting of depth normalization, min, max, diff
        # will *only* print to console if Dev mode is enabled in general settings of Deforum
        txt_depth_min, txt_depth_max = '{:.2f}'.format(float(depth_tensor.min())), '{:.2f}'.format(float(depth_tensor.max()))
        diff = '{:.2f}'.format(float(depth_tensor.max()) - float(depth_tensor.min()))
        console_txt = f"\033[36mDepth normalized to {depth_final.min()}/{depth_final.max()} from"
        debug_print(f"{console_txt} {txt_depth_min}/{txt_depth_max} diff {diff}\033[0m") 

        # add z from depth
        z = torch.as_tensor(depth_final, dtype=torch.float32, device=device)

    # calculate offset_xy
    xyz_old_world = torch.stack((x.flatten(), y.flatten(), z.flatten()), dim=1)
    xyz_old_cam_xy = persp_cam_old.get_full_projection_transform().transform_points(xyz_old_world)[:,0:2]
    xyz_new_cam_xy = persp_cam_new.get_full_projection_transform().transform_points(xyz_old_world)[:,0:2]
    offset_xy = xyz_new_cam_xy - xyz_old_cam_xy

    # affine_grid theta param expects a batch of 2D mats. Each is 2x3 to do rotation+translation.
    identity_2d_batch = torch.tensor([[1.,0.,0.],[0.,1.,0.]], device=device).unsqueeze(0)

    # coords_2d will have shape (N,H,W,2).. which is also what grid_sample needs.
    coords_2d = torch.nn.functional.affine_grid(identity_2d_batch, [1,1,h,w], align_corners=False)
    offset_coords_2d = coords_2d - torch.reshape(offset_xy, (h,w,2)).unsqueeze(0)

    # do the hyperdimensional remap
    image_tensor = rearrange(torch.from_numpy(prev_img_cv2.astype(np.float32)), 'h w c -> c h w').to(device)
    new_image = torch.nn.functional.grid_sample(
        image_tensor.unsqueeze(0),  # image_tensor.add(1/512 - 0.0001).unsqueeze(0), 
        offset_coords_2d, 
        mode=anim_args.sampling_mode, 
        padding_mode=anim_args.padding_mode, 
        align_corners=False
    )

    # convert back to cv2 style numpy array
    result = rearrange(
        new_image.squeeze().clamp(0,255), 
        'c h w -> h w c'
    ).cpu().numpy().astype(prev_img_cv2.dtype)
    return result

def prepare_depth_tensor(depth_tensor=None):
    # Prepares a depth tensor with normalization & equalization between 0 and 1
    depth_range = depth_tensor.max() - depth_tensor.min()
    depth_tensor = (depth_tensor - depth_tensor.min()) / depth_range
    depth_tensor = depth_equalization(depth_tensor=depth_tensor)    
    return depth_tensor

def depth_equalization(depth_tensor):
    """
    Perform histogram equalization on a single-channel depth tensor.

    Args:
    depth_tensor (torch.Tensor): A 2D depth tensor (H, W).

    Returns:
    torch.Tensor: Equalized depth tensor (2D).
    """

    # Convert the depth tensor to a NumPy array for processing
    depth_array = depth_tensor.cpu().numpy()

    # Calculate the histogram of the depth values using a specified number of bins
    # Increase the number of bins for higher precision depth tensors
    hist, bin_edges = np.histogram(depth_array, bins=1024, range=(0, 1))

    # Calculate the cumulative distribution function (CDF) of the histogram
    cdf = hist.cumsum()

    # Normalize the CDF so that the maximum value is 1
    cdf = cdf / float(cdf[-1])

    # Perform histogram equalization by mapping the original depth values to the CDF values
    equalized_depth_array = np.interp(depth_array, bin_edges[:-1], cdf)

    # Convert the equalized depth array back to a PyTorch tensor and return it
    equalized_depth_tensor = torch.from_numpy(equalized_depth_array).to(depth_tensor.device)

    return equalized_depth_tensor