Tihsrah-CD's picture
Topic Classifier v2 Added
c97f929
|
raw
history blame
4.84 kB
# Topic Classifier
This repository contains the Topic Classifier model developed by DAXA.AI. The Topic Classifier is a machine learning model designed to categorize text documents across various domains, such as corporate documents, financial texts, harmful content, and medical documents.
## Model Details
### Model Description
The Topic Classifier is a BERT-based model, fine-tuned from the `distilbert-base-uncased` model. It is intended for categorizing text into specific topics, including "CORPORATE_DOCUMENTS," "FINANCIAL," "HARMFUL," and "MEDICAL." This model streamlines text classification tasks across multiple sectors, making it suitable for various business use cases.
- **Developed by:** DAXA.AI
- **Funded by:** Open Source
- **Model type:** Text classification
- **Language(s):** English
- **License:** MIT
- **Fine-tuned from:** `distilbert-base-uncased`
### Model Sources
- **Repository:** [https://huggingface.co/daxa-ai/topic-classifier](https://huggingface.co/daxa-ai/Topic-Classifier-2)
- **Demo:** [https://huggingface.co/spaces/daxa-ai/Topic-Classifier-2](https://huggingface.co/spaces/daxa-ai/Topic-Classifier-2)
## Usage
### How to Get Started with the Model
To use the Topic Classifier in your Python project, you can follow the steps below:
```python
# Import necessary libraries
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import joblib
from huggingface_hub import hf_hub_url, cached_download
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("daxa-ai/topic-classifier")
model = AutoModelForSequenceClassification.from_pretrained("daxa-ai/topic-classifier")
# Example text
text = "Please enter your text here."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
# Apply softmax to the logits
probabilities = torch.nn.functional.softmax(output.logits, dim=-1)
# Get the predicted label
predicted_label = torch.argmax(probabilities, dim=-1)
# URL of your Hugging Face model repository
REPO_NAME = "daxa-ai/topic-classifier"
# Path to the label encoder file in the repository
LABEL_ENCODER_FILE = "label_encoder.joblib"
# Construct the URL to the label encoder file
url = hf_hub_url(REPO_NAME, filename=LABEL_ENCODER_FILE)
# Download and cache the label encoder file
filename = cached_download(url)
# Load the label encoder
label_encoder = joblib.load(filename)
# Decode the predicted label
decoded_label = label_encoder.inverse_transform(predicted_label.numpy())
print(decoded_label)
```
## Training Details
### Training Data
The training dataset consists of 29,286 entries, categorized into four distinct labels. The distribution of these labels is presented below:
| Document Type | Instances |
| ------------------- | --------- |
| CORPORATE_DOCUMENTS | 17,649 |
| FINANCIAL | 3,385 |
| HARMFUL | 2,388 |
| MEDICAL | 5,864 |
### Evaluation
#### Testing Data & Metrics
The model was evaluated on a dataset consisting of 4,565 entries. The distribution of labels in the evaluation set is shown below:
| Document Type | Instances |
| ------------------- | --------- |
| CORPORATE_DOCUMENTS | 3,051 |
| FINANCIAL | 409 |
| HARMFUL | 246 |
| MEDICAL | 859 |
The evaluation metrics include precision, recall, and F1-score, calculated for each label:
| Document Type | Precision | Recall | F1-Score | Support |
| ------------------- | --------- | ------ | -------- | ------- |
| CORPORATE_DOCUMENTS | 1.00 | 1.00 | 1.00 | 3,051 |
| FINANCIAL | 0.95 | 0.96 | 0.96 | 409 |
| HARMFUL | 0.95 | 0.95 | 0.95 | 246 |
| MEDICAL | 0.99 | 1.00 | 0.99 | 859 |
| Accuracy | | | 0.99 | 4,565 |
| Macro Avg | 0.97 | 0.98 | 0.97 | 4,565 |
| Weighted Avg | 0.99 | 0.99 | 0.99 | 4,565 |
#### Test Data Evaluation Results
The model's evaluation results are as follows:
- **Evaluation Loss:** 0.0233
- **Accuracy:** 0.9908
- **Precision:** 0.9909
- **Recall:** 0.9908
- **F1-Score:** 0.9908
- **Evaluation Runtime:** 30.1149 seconds
- **Evaluation Samples Per Second:** 151.586
- **Evaluation Steps Per Second:** 2.391
## Conclusion
The Topic Classifier achieves high accuracy, precision, recall, and F1-score, making it a reliable model for categorizing text across the domains of corporate documents, financial content, harmful content, and medical texts. The model is optimized for immediate deployment and works efficiently in real-world applications.
For more information or to try the model yourself, check out the public space [here](https://huggingface.co/spaces/daxa-ai/Topic-Classifier-2).