File size: 9,606 Bytes
bff4b05 a9b94fc bff4b05 a9b94fc bff4b05 a9b94fc 7146e47 27df1f0 4629a86 df993dc 49adaac 15a0d8c 3d7b748 55a99ee 38c5eb1 586ff76 575a123 bff4b05 01295f5 bff4b05 01295f5 bff4b05 01295f5 bff4b05 ed65f32 bff4b05 01295f5 bff4b05 01295f5 bff4b05 01295f5 bff4b05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
---
license: other
base_model: black-forest-labs/FLUX.1-dev
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- safe-for-work
- lora
- template:sd-lora
- standard
inference: true
widget:
- text: >-
In the style of a b3nbr4nd painting, Massive green serpent, coiled around a
cracked stone obelisk, golden eyes glowing, dark blue scales with iridescent
shimmer, open mouth revealing sharp fangs, pink sky fading into deep purple,
sand dunes stretching into the horizon, ancient ruins partially buried, red
banners flapping in the wind.
output:
url: images/example_93zee9o4f.png
- text: >-
In the style of a b3nbr4nd painting, The Fractured Cathedral – Ruined temple
standing between timelines, stained glass windows refracting multiple
realities, golden gears turning in the vaulted ceiling, priests in robes of
shifting colors, a mechanical choir humming in binary, relics of forgotten
AI scattered on an altar, static crackling like divine whispers.
output:
url: images/example_4d6wwz6le.png
- text: >-
In the style of a b3nbr4nd painting, The Cartographer of Lost Time – A
hunched figure tracing glowing lines across an ancient map, ink shifting as
if alive, continents forming and vanishing, thousands of tiny golden orbs
orbiting the parchment, the map itself whispering of places that no longer
exist, candlelight flickering in unknown patterns.
output:
url: images/example_76ryedo2w.png
- text: >-
In the style of a b3nbr4nd painting, A steaming outdoor pool carved from
volcanic rock, floating lanterns casting rippling golden reflections, pale
steam curling upwards into a canopy of sapphire sky, koi fish with silver
scales swimming in slow, deliberate circles.
output:
url: images/example_26dlths2u.png
- text: >-
In the style of a b3nbr4nd painting, snake, black snakes, desert, cacti,
cactus, prickly pear cactus, yucca plant, orange eye, mountains, purple
mountains, blue sky, green cactus, yellow desert, close-up view, coiled
snake, landscape, arid environment, vegetation, plant, side view, foreground
snake, background mountains
output:
url: images/example_7dbo2ambr.png
- text: >-
In the style of a b3nbr4nd painting, starry night sky, tall buildings,
skyscrapers, windows, connected buildings, walkway, green checkerboard
pattern walkway, arched windows, trees with lights, urban landscape,
geometric architecture, city night scene, multicolored buildings, modern
cityscape, midground walkway, background buildings, illuminated windows,
high-rise structure, blue building, city park with lights
output:
url: images/example_0yhoo7022.png
- text: >-
In the style of a b3nbr4nd painting, Massive gold-plated pyramid, intricate
carvings on its surface, glowing blue symbols along edges, deep violet sky,
swirling pink clouds, hovering metallic spheres reflecting the landscape, a
lone traveler in red robes ascending marble stairs, crystal-clear river
flowing around pyramid base.
output:
url: images/example_ukhhecdk6.png
- text: >-
In the style of a b3nbr4nd painting, blue vases, pink tulip, table with
patterned tablecloth, orange mugs, green teapot, posters on wall, red
poster, text on red poster, white text, yellow wall, drawers in background,
multiple cups, ceramic kettle, lid on kettle, floral mug, window with
striped curtains, indoor scene, objects on table, vase in center, tea set
output:
url: images/example_lt06actvo.png
- text: >-
In the style of a b3nbr4nd painting, Armored knight in reflective silver
plate, tattered blue cape, standing on a vast frozen lake, sword planted in
ice, glowing runes along blade, towering ice formations in background, pale
full moon overhead, scattered red leaves on ice surface, distant torches
flickering along mountain ridge.
output:
url: images/example_ci76xrrmd.png
- text: >-
In the style of a b3nbr4nd painting, Towering white marble golem, deep blue
glowing veins across its body, massive stone hands gripping a golden spear,
standing before an ancient archway, intricate carvings on stone, overgrown
vines wrapping around pillars, golden sunset casting long shadows, wind
carrying red and orange leaves through the air.
output:
url: images/example_7cijuhve7.png
- text: >-
In the style of a b3nbr4nd painting, Giant bird made of sapphire flames,
wings spread wide, glowing embers trailing behind, deep black sky with
thousands of stars, large yellow moon behind bird, floating islands in the
distance, waterfalls spilling into nothingness, golden temple on one of the
islands, reflections of stars on the bird’s feathers.
output:
url: images/example_6jrnouoij.png
---
# Ben-Brand-LoRA
This is a standard PEFT LoRA derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
No validation prompt was used during training.
None
## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `FlowMatchEulerDiscreteScheduler`
- Seed: `42`
- Resolution: `1024x1024`
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 2
- Training steps: 3750
- Learning rate: 0.00015
- Learning rate schedule: constant
- Warmup steps: 100
- Max grad norm: 0.1
- Effective batch size: 6
- Micro-batch size: 2
- Gradient accumulation steps: 3
- Number of GPUs: 1
- Gradient checkpointing: True
- Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible', 'flux_lora_target=all'])
- Optimizer: adamw_bf16
- Trainable parameter precision: Pure BF16
- Caption dropout probability: 10.0%
- LoRA Rank: 64
- LoRA Alpha: None
- LoRA Dropout: 0.1
- LoRA initialisation style: default
## Datasets
### ben-brand-256
- Repeats: 10
- Total number of images: 98
- Total number of aspect buckets: 3
- Resolution: 0.065536 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### ben-brand-crop-256
- Repeats: 10
- Total number of images: 98
- Total number of aspect buckets: 1
- Resolution: 0.065536 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
### ben-brand-512
- Repeats: 10
- Total number of images: 98
- Total number of aspect buckets: 3
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### ben-brand-crop-512
- Repeats: 10
- Total number of images: 98
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
### ben-brand-768
- Repeats: 10
- Total number of images: 98
- Total number of aspect buckets: 3
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### ben-brand-crop-768
- Repeats: 10
- Total number of images: 98
- Total number of aspect buckets: 1
- Resolution: 0.589824 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
### ben-brand-1024
- Repeats: 10
- Total number of images: 98
- Total number of aspect buckets: 4
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### ben-brand-crop-1024
- Repeats: 10
- Total number of images: 98
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
### ben-brand-1440
- Repeats: 10
- Total number of images: 98
- Total number of aspect buckets: 2
- Resolution: 2.0736 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### ben-brand-crop-1440
- Repeats: 10
- Total number of images: 98
- Total number of aspect buckets: 1
- Resolution: 2.0736 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
## Inference
```python
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'davidrd123/Ben-Brand-LoRA'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)
prompt = "An astronaut is riding a horse through the jungles of Thailand."
## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
```
|