File size: 6,369 Bytes
4241745
 
c0bf9e6
 
 
 
 
 
 
 
 
4241745
 
c0bf9e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
library_name: transformers
license: apache-2.0
base_model: davidilag/wav2vec2-xls-r-1b-scandinavian-E2-100h-30-epochs-20250123
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xls-r-1b-E2-faroese-100h-30-epochs_20250124_v3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xls-r-1b-E2-faroese-100h-30-epochs_20250124_v3

This model is a fine-tuned version of [davidilag/wav2vec2-xls-r-1b-scandinavian-E2-100h-30-epochs-20250123](https://huggingface.co/davidilag/wav2vec2-xls-r-1b-scandinavian-E2-100h-30-epochs-20250123) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1178
- Wer: 19.6766
- Cer: 4.2984

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5000
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Wer      | Cer     |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|:-------:|
| 3.0158        | 0.4877  | 1000  | 3.2867          | 100.1278 | 90.1077 |
| 0.8828        | 0.9754  | 2000  | 0.6226          | 64.6429  | 19.5448 |
| 0.5525        | 1.4628  | 3000  | 0.3515          | 42.8030  | 12.1094 |
| 0.4761        | 1.9505  | 4000  | 0.2862          | 37.6437  | 10.2765 |
| 0.3943        | 2.4379  | 5000  | 0.2760          | 35.6831  | 9.6572  |
| 0.3827        | 2.9256  | 6000  | 0.2715          | 34.3834  | 9.4094  |
| 0.3386        | 3.4131  | 7000  | 0.2373          | 32.3964  | 8.4524  |
| 0.2965        | 3.9008  | 8000  | 0.2105          | 30.3476  | 7.8638  |
| 0.2807        | 4.3882  | 9000  | 0.2004          | 29.8145  | 7.6445  |
| 0.2881        | 4.8759  | 10000 | 0.1956          | 29.4444  | 7.5324  |
| 0.2609        | 5.3633  | 11000 | 0.1880          | 28.4046  | 7.2800  |
| 0.2518        | 5.8510  | 12000 | 0.1842          | 28.1667  | 7.0835  |
| 0.2191        | 6.3385  | 13000 | 0.1790          | 27.5984  | 6.8847  |
| 0.2159        | 6.8261  | 14000 | 0.1894          | 28.2416  | 7.1790  |
| 0.2076        | 7.3136  | 15000 | 0.1714          | 26.7612  | 6.7245  |
| 0.2007        | 7.8013  | 16000 | 0.1805          | 27.0653  | 6.9486  |
| 0.1662        | 8.2887  | 17000 | 0.1792          | 26.1136  | 6.4886  |
| 0.1764        | 8.7764  | 18000 | 0.1626          | 26.3823  | 6.5478  |
| 0.1426        | 9.2638  | 19000 | 0.1623          | 25.3646  | 6.2456  |
| 0.1406        | 9.7515  | 20000 | 0.1642          | 25.4747  | 6.2275  |
| 0.144         | 10.2390 | 21000 | 0.1620          | 25.1002  | 6.1880  |
| 0.1328        | 10.7267 | 22000 | 0.1558          | 24.8227  | 6.0854  |
| 0.1366        | 11.2141 | 23000 | 0.1521          | 24.2235  | 5.9079  |
| 0.1223        | 11.7018 | 24000 | 0.1461          | 24.0913  | 5.7777  |
| 0.1195        | 12.1892 | 25000 | 0.1378          | 23.9855  | 5.7580  |
| 0.1218        | 12.6769 | 26000 | 0.1347          | 23.8137  | 5.5623  |
| 0.1069        | 13.1644 | 27000 | 0.1350          | 23.3159  | 5.5276  |
| 0.1037        | 13.6520 | 28000 | 0.1400          | 23.0735  | 5.4740  |
| 0.0885        | 14.1395 | 29000 | 0.1432          | 23.1528  | 5.4030  |
| 0.0934        | 14.6272 | 30000 | 0.1321          | 22.8841  | 5.3430  |
| 0.0836        | 15.1146 | 31000 | 0.1285          | 22.4303  | 5.1742  |
| 0.0875        | 15.6023 | 32000 | 0.1237          | 22.3422  | 5.1260  |
| 0.0741        | 16.0897 | 33000 | 0.1345          | 22.3333  | 5.2176  |
| 0.0712        | 16.5774 | 34000 | 0.1348          | 22.1439  | 5.0929  |
| 0.0747        | 17.0649 | 35000 | 0.1269          | 21.7650  | 4.9777  |
| 0.0735        | 17.5525 | 36000 | 0.1262          | 21.7782  | 4.9280  |
| 0.0598        | 18.0400 | 37000 | 0.1253          | 21.7518  | 4.9730  |
| 0.0564        | 18.5277 | 38000 | 0.1196          | 21.5095  | 4.9020  |
| 0.0574        | 19.0151 | 39000 | 0.1187          | 21.1438  | 4.7939  |
| 0.0526        | 19.5028 | 40000 | 0.1218          | 21.1394  | 4.7655  |
| 0.0495        | 19.9905 | 41000 | 0.1188          | 21.0116  | 4.6905  |
| 0.056         | 20.4779 | 42000 | 0.1160          | 20.7913  | 4.6392  |
| 0.0524        | 20.9656 | 43000 | 0.1180          | 20.7693  | 4.6140  |
| 0.0474        | 21.4531 | 44000 | 0.1211          | 20.5446  | 4.6100  |
| 0.054         | 21.9407 | 45000 | 0.1152          | 20.4036  | 4.5588  |
| 0.0339        | 22.4282 | 46000 | 0.1181          | 20.3595  | 4.4885  |
| 0.0437        | 22.9159 | 47000 | 0.1179          | 20.2273  | 4.4562  |
| 0.0408        | 23.4033 | 48000 | 0.1172          | 20.1524  | 4.4538  |
| 0.0418        | 23.8910 | 49000 | 0.1197          | 20.1260  | 4.4317  |
| 0.0415        | 24.3784 | 50000 | 0.1174          | 20.0423  | 4.4041  |
| 0.0353        | 24.8661 | 51000 | 0.1128          | 19.9410  | 4.3804  |
| 0.0385        | 25.3536 | 52000 | 0.1152          | 19.9674  | 4.3797  |
| 0.0365        | 25.8413 | 53000 | 0.1143          | 19.8132  | 4.3449  |
| 0.0355        | 26.3287 | 54000 | 0.1175          | 19.8088  | 4.3355  |
| 0.0324        | 26.8164 | 55000 | 0.1184          | 19.7956  | 4.3260  |
| 0.032         | 27.3038 | 56000 | 0.1186          | 19.7515  | 4.3229  |
| 0.032         | 27.7915 | 57000 | 0.1174          | 19.7163  | 4.3173  |
| 0.0387        | 28.2790 | 58000 | 0.1175          | 19.7295  | 4.3221  |
| 0.0345        | 28.7666 | 59000 | 0.1180          | 19.6634  | 4.3055  |
| 0.0451        | 29.2541 | 60000 | 0.1179          | 19.6546  | 4.2992  |
| 0.0476        | 29.7418 | 61000 | 0.1178          | 19.6766  | 4.2984  |


### Framework versions

- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0