File size: 1,892 Bytes
76c3132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e99066
 
 
 
 
76c3132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e99066
76c3132
 
 
 
 
3e99066
 
 
 
 
76c3132
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: training
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# training

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8713
- Accuracy: 0.5183
- F1: 0.5192
- Precision: 0.5219
- Recall: 0.5183

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log        | 1.0   | 66   | 0.7083          | 0.4970   | 0.4093 | 0.5891    | 0.4970 |
| No log        | 2.0   | 132  | 0.7447          | 0.4939   | 0.4486 | 0.5338    | 0.4939 |
| No log        | 3.0   | 198  | 0.7978          | 0.5      | 0.4814 | 0.5239    | 0.5    |
| No log        | 4.0   | 264  | 0.8450          | 0.5091   | 0.5100 | 0.5136    | 0.5091 |
| No log        | 5.0   | 330  | 0.8713          | 0.5183   | 0.5192 | 0.5219    | 0.5183 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0