File size: 15,823 Bytes
076214d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# coding=utf-8
# Copyright (c) 2024 Ant Group
# Author: Xiang Hu
import torch.nn as nn
import torch
import torch.nn.functional as F
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor
from dataclasses import dataclass
from typing import Optional
from transformers import PreTrainedModel, PretrainedConfig, GPT2Config
from transformers.modeling_outputs import MaskedLMOutput
from lmup.gpst.gpt2_flash_attn import GPT2Model
#from lmup.gpst.config import *
from lmup.gpst.r2d2_insideoutside import *
import copy

def load_model(model, model_path, strict=True):
    state_dict = torch.load(model_path, map_location=lambda a, b: a)
    transfered_state_dict = {}
    for k, v in state_dict.items():
        new_k = k.replace('module.', '')
        transfered_state_dict[new_k] = v
    model.load_state_dict(transfered_state_dict, strict=strict)

def index_sanity_hook(module, input, output):
    def check(tensor):
        if isinstance(tensor, torch.Tensor):
            if tensor.dtype == torch.long or "int" in str(tensor.dtype):
                if tensor.max() > 10000 or tensor.min() < -10000:  # change threshold if needed
                    print(f"[!] Suspicious index in {module.__class__.__name__}: min={tensor.min().item()}, max={tensor.max().item()}, shape={tensor.shape}")

    # Check all inputs
    for item in input:
        if isinstance(item, (tuple, list)):
            for sub in item:
                check(sub)
        else:
            check(item)

@dataclass(kw_only=True)
class R2D2GenOutput():
    struct_loss: Optional[torch.FloatTensor] = None,
    non_struct_loss: Optional[torch.FloatTensor] = None,
    non_struct_loss_fullscale: Optional[torch.FloatTensor] = None,
    action_logits: Optional[torch.FloatTensor] = None,
    hidden_states: Optional[torch.FloatTensor] = None,
    cls_hidden_states: Optional[torch.FloatTensor] = None,
    tgt_ids: Optional[torch.LongTensor] = None, 
    pred: Optional[torch.FloatTensor] = None, 
    splits: Optional[torch.LongTensor] = None,
    gpt_loss: Optional[torch.FloatTensor] = None,
    action_loss: Optional[torch.FloatTensor] = None,
    inside_outside_loss: Optional[torch.FloatTensor] = None,
    parser_loss: Optional[torch.FloatTensor] = None, 
    glue_finetune_loss: Optional[torch.FloatTensor] = None,
    past_kv: Optional[torch.FloatTensor] = None
    logits: Optional[torch.FloatTensor] = None,
    loss: Optional[torch.FloatTensor] = None,


class GPSTConfig(PretrainedConfig):
    model_type = "gpst"
    
    def __init__(self, r2d2=None, gpt=None, **kwargs):#, gptconfig, r2d2config, **kwargs):

        self.gptconfig = gpt
        self.r2d2config = r2d2
        super().__init__(**kwargs)

class GPST(PreTrainedModel):
    config_class = GPSTConfig

    def __init__(self, config, gradient_checkpoint=False):
        super().__init__(config)
        self.config = config
        self.r2d2_config = PretrainedConfig.from_dict(config.r2d2config)
        self.gpt_config = GPT2Config.from_dict(config.gptconfig)

        self.vocab_size = self.gpt_config.vocab_size

        total_layer = self.gpt_config.n_layer
        action_transformers = GPT2Model(copy.deepcopy(self.gpt_config), no_embedding=True, no_layer_norm=True, n_layers_manual=self.gpt_config.action_layer_num)
        action_transformers.gradient_checkpointing = gradient_checkpoint
        self.gpt_config.n_layer = total_layer - self.gpt_config.action_layer_num
        self.gpt_config.num_hidden_layers = total_layer - self.gpt_config.action_layer_num
        gpt_transformers = GPT2Model(self.gpt_config, no_embedding=True, no_extra_embedding=True)
        gpt_transformers.gradient_checkpointing = gradient_checkpoint

        r2d2 = InsideOutsideModule(self.r2d2_config)
        self.model = FastGenerativeR2D2(
            r2d2=r2d2, 
            action_layers=action_transformers, 
            generation_layers=gpt_transformers, 
            vocab_size=self.vocab_size,
            r2d2_input_dim=r2d2.input_dim,
            embedding_dim=self.gpt_config.n_embd,
            ext_vocab_size=self.r2d2_config.ext_vocab_size,
            dense_hidden_factor=self.gpt_config.dense_hidden_factor
        )

        #for name, module in self.model.named_modules():
        #    #module.register_forward_hook(index_sanity_hook)
        #    module.register_full_backward_hook(index_sanity_hook)

    def get_input_embeddings(self):
        return self.model.embeddings
    
    def forward(self, **kwargs):
        return self.model(**kwargs)

class FastGenerativeR2D2(nn.Module):
    def __init__(self, r2d2, action_layers, generation_layers, vocab_size, 
                 r2d2_input_dim, embedding_dim, dropout_rate=0.2, ext_vocab_size=0, 
                 fix_embeddings=False, dense_hidden_factor=4):
        # embedding dim is used to feed to r2d2
        # input dim is sued to feed to GPT
        super().__init__()
        self.embedding_dim = embedding_dim  # embedding_dim > r2d2_input_dim
        self.r2d2_input_dim = r2d2_input_dim
        self.r2d2 = r2d2

        self.vocab_size = vocab_size

        # self.action_ln = nn.Linear(self.embedding_dim, 2)  # judge reduce or predict next token

        self.enable_gpt = False
        if action_layers is not None and generation_layers is not None:
            self.dense_hidden_factor = dense_hidden_factor
            self.action_layers = action_layers
            self.generation_layers = generation_layers
            self.bos_embedding = nn.Parameter(torch.rand(self.embedding_dim))
            self.up_scale = nn.Linear(self.r2d2_input_dim, self.embedding_dim)
            self.dense = nn.Sequential(nn.Linear(self.embedding_dim, self.dense_hidden_factor * self.embedding_dim),
                                        nn.GELU(),
                                        nn.Dropout(dropout_rate),
                                        nn.Linear(self.dense_hidden_factor * self.embedding_dim, self.embedding_dim))
            self.action_mlp = nn.Sequential(nn.LayerNorm(self.embedding_dim),
                                nn.Linear(self.embedding_dim, self.embedding_dim),
                                nn.GELU(),
                                nn.Dropout(dropout_rate),
                                nn.Linear(self.embedding_dim, 2))
            self.enable_gpt = True
        
        self.classifier = nn.Linear(self.embedding_dim, vocab_size, bias=False)
        self.embeddings = nn.Embedding(vocab_size, self.embedding_dim)
        self.embeddings.requires_grad = not fix_embeddings
        self.down_scale = nn.Linear(self.embedding_dim, self.r2d2_input_dim)

        self.insideoutside_dense = nn.Sequential(
            nn.Linear(r2d2_input_dim, self.dense_hidden_factor * r2d2_input_dim),
            nn.GELU(),
            nn.Dropout(dropout_rate),
            nn.Linear(self.dense_hidden_factor * r2d2_input_dim, self.embedding_dim)
        )

        # self.parallel_stream = torch.cuda.Stream()

        self._init_weights()
        self._tie_weights()

    def _init_weights(self):
        if self.enable_gpt:
            self.bos_embedding.data.normal_(mean=0, std=0.02)
        self.embeddings.weight.data.normal_(mean=0, std=0.02)

    def _tie_weights(self):
        self.classifier.weight = self.embeddings.weight

    def get_parser(self):
        return self.r2d2.parser
        
    def from_pretrain(self, model_path, strict=True):
        load_model(self, model_path, strict=strict)
        self._tie_weights()

    def _append_eos_label(self, eos_labels, chunk_input_ids, chunk_masks, next_token_indices, max_input_len):
        chunk_masks = (chunk_masks.sum(dim=1) > 0).to(int)
        seq_lens = chunk_masks.sum(dim=1)  # (N)
        temp_ids = torch.zeros((chunk_input_ids.shape[0], chunk_input_ids.shape[1] + 1), dtype=chunk_input_ids.dtype, device=chunk_input_ids.device)
        temp_ids.fill_(-100)
        temp_ids[:, :-1] = chunk_input_ids
        # comment this line to support discriminant way
        temp_ids.scatter_(1, seq_lens.unsqueeze(1), torch.tensor(eos_labels, device=chunk_input_ids.device).unsqueeze(1))
        chunk_input_ids = temp_ids
        next_token_indices = next_token_indices[:, :max_input_len + 1]
        return next_token_indices, chunk_input_ids

    def forward(self, chunk_input_ids= None, chunk_masks=None, input_ids=None, masks=None, eos_labels=None, group_ids=None, 
                atom_spans=None, span_ids=None, external_vocab_ids=None, 
                coeff=1.0, temperature=1.0, past_key_values=None):
        batch_size = max(group_ids) + 1
        r2d2_input_ids = torch.where(chunk_input_ids == -100, 0, chunk_input_ids)
        input_embeddings = self.embeddings(r2d2_input_ids)
        r2d2_embeddings = self.down_scale(input_embeddings)
        # max_input_len = chunk_input_ids.shape[1]
        max_input_len = (chunk_masks != 0).sum(dim=1).max().to('cpu', non_blocking=True)
        
        ctx, outside_tgt, ldr_repr, position_ids, tgt_ids, token_indices, ext_ids, split_targets, l_height = \
            self.r2d2(r2d2_input_ids, chunk_masks, input_ids, masks, r2d2_embeddings, group_ids, 
                      max_input_len, atom_spans=atom_spans, coeff=coeff, temperature=temperature, span_ids=span_ids,
                      eos_labels=eos_labels, external_vocab_ids=external_vocab_ids)


        if self.training:
            # with torch.cuda.stream(self.parallel_stream):
            parser_loss = self.r2d2.parser_loss(ctx)
            outside_embeddings = self.r2d2.outside_embeddings(ctx) # (num non-padding tokens in batch) x embedding_dim
            io_dense = self.insideoutside_dense(outside_embeddings) #  (num non-padding tokens in batch) x embedding_dim
            outside_logits = self.classifier(io_dense) # (num non-padding tokens in batch) x voc_size
            insideoutside_loss = F.cross_entropy(outside_logits, outside_tgt)
        else:
            parser_loss = insideoutside_loss = 0
        
        logits = action_logits = None
        gpt_loss = action_loss = 0
        past_kv = None
        hidden_states = None

        if self.enable_gpt:
            if past_key_values is not None:
                action_past_kv, gen_past_kv = past_key_values
            else:
                action_past_kv = gen_past_kv = None
            gpt_input = self.up_scale(ldr_repr).clone() # ldr_repr: batch_size x (2*max_seq_len - 1) x HP dim; gpt_input: batch_size x  (2*max_seq_len - 1) x emb_dim 
            gpt_input.scatter_(1, token_indices.unsqueeze(2).repeat(1, 1, input_embeddings.shape[-1]).clone(), 
                                input_embeddings.to(gpt_input.dtype)) # inserting values of input_embeddings at token_indices
            
            # ext_embedding = self.ext_embeds(ext_ids)
            # gpt_input = gpt_input + ext_embedding
            bos_emb = self.bos_embedding.unsqueeze(0).repeat(batch_size, 1)
            # position ids already considered <bos>
            cat_input = torch.cat([bos_emb.unsqueeze(1), gpt_input], dim=1)  # batch_size x 2*max_seq_len x emb_dim # old comment:  (group_size, L + 1, dim) where L is (2*max_seq_len - 1)
            # cat_input = self.layer_norm(cat_input)
            # cat_input = self.norm(cat_input)
            outputs = self.action_layers(inputs_embeds=cat_input, position_ids=position_ids, past_key_values=action_past_kv)  # (B, L, dim)
            action_logits = self.action_mlp(outputs.last_hidden_state)  # (batch_size x 2*max_seq_len x emb_dim) to (B, 2*max_seq_len, 2)
            # before, tgt_ids has shape (batch_size x 2*max_seq_len) and has the reduce_token_id (default: 50257) in some placdse. Paddingn: -1
            # first where expression: action_tgt has shape (batch_size x 2*max_seq_len), 0 and 1 values for generate/reduce. Padding is still zero
            # second where: padding with -1 
            action_tgt = torch.where(tgt_ids == self.r2d2.reduce_id, 1, 0)  # REDUCE: 1, SHIFT:0
            action_tgt = torch.where(tgt_ids != -1, action_tgt, -1)
            # print(action_tgt)

            next_token_indices = (tgt_ids != self.r2d2.reduce_id).int().argsort(dim=-1, descending=True, stable=True)  # (B, L)
            if eos_labels is None:
                #truncated_len = max_input_len if self.training else max_input_len + 1
                truncated_len = max_input_len
                next_token_indices = next_token_indices[:, :truncated_len] # batch_size x longest_sequence;  
            else:
                next_token_indices, chunk_input_ids = self._append_eos_label(eos_labels, chunk_input_ids, chunk_masks, next_token_indices, max_input_len)
            # outputs.last_hidden_state: batch_size x 2*max_seq_len x HP dim
            # generation_inputs: batch_size x max_seq_len x HP dim 
            # next_token_indices_reformat: batch_size x max_seq_len x HP dim
            next_token_indices_reformat = next_token_indices.unsqueeze(2).repeat(1, 1, self.embedding_dim)
            generation_inputs = outputs.last_hidden_state.gather(1, next_token_indices_reformat) 
            # token_pos_ids = position_ids.gather(1, next_token_indices)
            # gather outputs to predict the next token
            # token_outputs: LM output. Last hidden_state has batch_size x max_seq_len x HP dim
            token_outputs = self.generation_layers(inputs_embeds=generation_inputs, past_key_values=gen_past_kv)

            hidden_states = token_outputs.last_hidden_state
            logits = self.classifier(self.dense(hidden_states))  # new: batch_size x max_seq_len x voc_size old: (group_size, L + 1, vocab)
            # predict token loss + action loss
            # print("chunk_input_ids: ", chunk_input_ids)
            #if self.training:
            gpt_loss = F.cross_entropy(logits.permute(0, 2, 1), chunk_input_ids, ignore_index=-100)
            action_loss = F.cross_entropy(action_logits.permute(0, 2, 1), action_tgt, ignore_index=-1)
            past_kv = (outputs.past_key_values, token_outputs.past_key_values)

        # torch.cuda.synchronize()
        # return loss + lm_loss + parser_loss, split_targets
        return R2D2GenOutput(struct_loss=insideoutside_loss + l_height, 
                             non_struct_loss=0.5 * gpt_loss + action_loss + parser_loss,
                             non_struct_loss_fullscale=gpt_loss + action_loss + parser_loss,
                             logits=logits,
                             action_logits=action_logits,
                             hidden_states=hidden_states, 
                             tgt_ids=chunk_input_ids, 
                             gpt_loss=gpt_loss,
                             action_loss=action_loss,
                             inside_outside_loss=insideoutside_loss,
                             parser_loss=parser_loss,
                             past_kv=past_kv,
                             splits=split_targets,
                             loss=action_loss+gpt_loss+parser_loss+insideoutside_loss+l_height)
        # parser_loss should be fine

class FastGenerativeR2D2_discriminant_glue(FastGenerativeR2D2):
    
    def _append_eos_label(self, eos_labels, chunk_input_ids, chunk_masks, next_token_indices, max_input_len):
        chunk_masks = (chunk_masks.sum(dim=1) > 0).to(int)
        seq_lens = chunk_masks.sum(dim=1)  # (N)
        temp_ids = torch.zeros((chunk_input_ids.shape[0], chunk_input_ids.shape[1] + 1), dtype=chunk_input_ids.dtype, device=chunk_input_ids.device)
        temp_ids.fill_(-100)
        temp_ids[:, :-1] = chunk_input_ids
        # temp_ids.scatter_(1, seq_lens.unsqueeze(1), torch.tensor(eos_labels, device=chunk_input_ids.device).unsqueeze(1))
        chunk_input_ids = temp_ids
        next_token_indices = next_token_indices[:, :max_input_len + 1]
        return next_token_indices, chunk_input_ids