metadata
language:
- en
library_name: transformers
license: apache-2.0
tags:
- mlx
- mlx
base_model: mlx-community/SmolLM-1.7B-Instruct-8bit
datasets:
- dattaraj/pc-insurance-cost-estimator
dattaraj/smol-lora-insurance-estimates
The Model dattaraj/smol-lora-insurance-estimates was converted to MLX format from mlx-community/SmolLM-1.7B-Instruct-8bit using mlx-lm version 0.19.1. This is a test to demonstrate the power of small langauge models. We take a SmoLM 1.7B model and fine-tune it on insurance estimation dataset available at: https://huggingface.co/datasets/dattaraj/pc-insurance-cost-estimator The fine-tuned language model is now expert at taking text description of damage and generating cost estimation.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("dattaraj/smol-lora-insurance-estimates")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)