metadata
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.3
model-index:
- name: mistral-v0.3-vi-alpaca
results: []
language:
- vi
- en
pipeline_tag: text-generation
datasets:
- bkai-foundation-models/vi-alpaca
Mistral-7B-Instruct-v0.3 LoRA
This model is a LoRA fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on bkai-foundation-models/vi-alpaca dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.4744
- eval_runtime: 241.8465
- eval_samples_per_second: 31.016
- eval_steps_per_second: 3.878
- epoch: 1.0
- step: 10627
Usage
# !pip install accelerate bitsandbytes peft
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, AutoTokenizer
import torch
model_name = "mistralai/Mistral-7B-Instruct-v0.3"
peft_model_id = "date3k2/Mistral-7B-Instruct-vi-alpaca"
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
model.load_adapter(peft_model_id)
device = "cuda"
messages = [
{
"role": "user",
"content": """You are a helpful Vietnamese AI chatbot. Below is an instruction that describes a task. Write a response that appropriately completes the request. Your response should be in Vietnamese.
Instruction:
Viết công thức để nấu một món ngon từ thịt bò.""",
},
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=500, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 4
Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1