File size: 2,880 Bytes
e7b285a 5a17887 e7b285a 84b35d6 e7b285a 3b243dd e7b285a 3b243dd e7b285a 3b243dd 1c526b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
# coding=utf-8
# Lint as: python3
"""Passage Ranking fintune dataset."""
import json
import datasets
_CITATION = """
@misc{bajaj2018ms,
title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset},
author={Payal Bajaj and Daniel Campos and Nick Craswell and Li Deng and Jianfeng Gao and Xiaodong Liu
and Rangan Majumder and Andrew McNamara and Bhaskar Mitra and Tri Nguyen and Mir Rosenberg and Xia Song
and Alina Stoica and Saurabh Tiwary and Tong Wang},
year={2018},
eprint={1611.09268},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = "MSMARCO Passage Ranking datas"
_DATASET_URLS = {
'corpus': "https://huggingface.co/datasets/zyznull/msmarco-passage-corpus/resolve/main/collection.tsv.gz",
'train_query': "https://huggingface.co/datasets/zyznull/msmarco-passage-corpus/resolve/main/train_queries.tsv.gz",
'dev_query': "https://huggingface.co/datasets/zyznull/msmarco-passage-corpus/resolve/main/dev_queries.tsv.gz",
}
class MsMarcoPassage(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.1")
BUILDER_CONFIGS = [
datasets.BuilderConfig(version=VERSION,
description="MS MARCO passage corpus"),
]
def _info(self):
features = datasets.Features({
'_id': datasets.Value('string'),
'text': datasets.Value('string'),
})
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="",
# License for the dataset if available
license="",
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS)
splits = [
datasets.SplitGenerator(
name=split,
gen_kwargs={
"files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split],
},
) for split in downloaded_files
]
return splits
def _generate_examples(self, files):
"""Yields examples."""
for filepath in files:
with open(filepath, encoding="utf-8") as f:
for i, line in enumerate(f):
line = line.trip().split('\t')
item = {'_id': line[0], 'text': line[1]}
yield i, item
|