File size: 4,470 Bytes
4fa1d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
"""OCWCourses"""


import json
import os
import re
import zipfile

import datasets

logger = datasets.logging.get_logger(__name__)

_CITATION = """\
@misc{lewkowycz2022solving,
      title={Solving Quantitative Reasoning Problems with Language Models}, 
      author={Aitor Lewkowycz and Anders Andreassen and David Dohan and Ethan Dyer and Henryk Michalewski and Vinay Ramasesh and Ambrose Slone and Cem Anil and Imanol Schlag and Theo Gutman-Solo and Yuhuai Wu and Behnam Neyshabur and Guy Gur-Ari and Vedant Misra},
      year={2022},
      eprint={2206.14858},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""

_DESCRIPTION = """\
OCWCourses
"""
_URL = "https://openreview.net/forum?id=IFXTZERXdM7"
_URLS = {
    "test": "https://openreview.net/attachment?id=IFXTZERXdM7&name=supplementary_material",
}

def _read_from_zip(zip_path, text_filename='minerva_supplement/ocw_courses_problems.text'):
    with zipfile.ZipFile(zip_path, 'r') as myzip:
        with myzip.open(text_filename) as myfile:
            return myfile.read().decode('utf-8')


def _parse_latex(text):
    problems = re.findall(r'\\textbf{Problem:}(.*?)\\textbf{Solution:}', text, re.DOTALL)
    solutions = re.findall(r'\\textbf{Solution:}(.*?)(\\textbf{Problem:}|$)', text, re.DOTALL)
    
    parsed_list = []
    for problem, solution in zip(problems, solutions):
        parsed_list.append({
            'problem': problem.strip(),
            'solution': solution[0].strip()
        })
        
    return parsed_list

def _last_boxed_only_string(string):

    idx = string.rfind("\\boxed")
    if "\\boxed " in string:
        return "\\boxed " + string.split("\\boxed ")[-1].split("$")[0]
    if idx < 0:
        idx = string.rfind("\\fbox")
        if idx < 0:
            return None

    i = idx
    right_brace_idx = None
    num_left_braces_open = 0
    while i < len(string):
        if string[i] == "{":
            num_left_braces_open += 1
        if string[i] == "}":
            num_left_braces_open -= 1
            if num_left_braces_open == 0:
                right_brace_idx = i
                break
        i += 1

    if right_brace_idx is None:
        retval = None
    else:
        retval = string[idx : right_brace_idx + 1]

    return retval

def _remove_boxed(s):
    if "\\boxed " in s:
        left = "\\boxed "
        assert s[: len(left)] == left
        return s[len(left) :]

    left = "\\boxed{"

    assert s[: len(left)] == left
    assert s[-1] == "}"

    return s[len(left) : -1]


class OCWConfig(datasets.BuilderConfig):
    """BuilderConfig for OCW."""

    def __init__(self, **kwargs):
        """BuilderConfig for OCW.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(OCWConfig, self).__init__(**kwargs)


class OCWCourses(datasets.GeneratorBasedBuilder):
    """OCWCourses"""

    BUILDER_CONFIGS = [
        OCWConfig(
            name="ocwcourses",
            version=datasets.Version("1.0.0", ""),
            description="OCWCourses",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "problem": datasets.Value("string"),
                    "solution": datasets.Value("string"),
                    "answer": datasets.Value("string"),
                }
            ),
            # No default supervised_keys (as we have to pass both question
            # and context as input).
            supervised_keys=None,
            homepage="https://openreview.net/forum?id=IFXTZERXdM7",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        downloaded_files = dl_manager.download_and_extract(_URLS)

        return [
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)

        with open(os.path.join(filepath, "minerva_supplement/ocw_courses_problems.tex")) as f:
            text = f.read()

        parsed_problems_solutions = _parse_latex(text)

        rows = [{**x, "answer": _remove_boxed(_last_boxed_only_string(x["solution"]))} for x in parsed_problems_solutions]

        for key, row in enumerate(rows):
            yield key, row