File size: 1,858 Bytes
d0e003e 699e104 d0e003e 153ed5d d0e003e 699e104 d0e003e 699e104 d0e003e 32237b2 d0e003e 88cb7d4 d0e003e 88cb7d4 d0e003e 88cb7d4 d0e003e 88cb7d4 858f2b4 324dec7 3271122 a4e9cb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
Ukrainian News Dataset
This is a dataset of news articles downloaded from various Ukrainian websites and Telegram channels. The dataset contains approximately ~23M JSON objects (news)
"""
_URLS = [
"ukrainian-news-vol1.jsonl",
"ukrainian-news-vol2.jsonl",
"ukrainian-news-vol3.jsonl",
"ukrainian-telegram.jsonl"
]
class UkrainianNews(datasets.GeneratorBasedBuilder):
"""Ukrainian News Dataset"""
VERSION = datasets.Version("0.0.2")
DEFAULT_CONFIG_NAME = "default"
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="default", version=VERSION, description=""),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("int32"),
"url": datasets.Value("string"),
"title": datasets.Value("string"),
"text": datasets.Value("string"),
"owner": datasets.Value("string"),
"datetime": datasets.Value("string"),
}
)
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download(_URLS)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": downloaded_files})
]
def _generate_examples(self, filepaths):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepaths)
for path in filepaths:
with open(path, encoding="utf-8") as f:
for news_str in f:
news = json.loads(news_str)
yield news['id'], news
|