ymanasa2000's picture
Column description update
196f507 verified
metadata
language: en
license: mit
source_datasets: https://doi.org/10.1016/j.cell.2024.03.027
task_categories:
  - tabular-classification
tags:
  - drug_discovery
  - cysteine
  - chemistry
  - biology
pretty_name: Cysteine Structure Database
dataset_summary: >-
  structural data regarding ligandabale and non ligandable cysteins in ~6000
  proteins along with probe interaction read outs.  PROBE indicates one of three
  probes KB02, KB03, or KB05
citation: |-
  @article{
    Takahashi_et_al_2024, 
    author={Takahashi, Chong, Harrison, Bar-Peled, et al},
    doi={10.1016/j.cell.2024.03.027},
    journal={Cell},
    number={10},
    month={May}
    title={DrugMap: A quantitative pan-cancer analysis of Cysteine ligandability},
    volume={187},
    year={2024}
    url = {https://www.biorxiv.org/content/10.1101/2023.10.20.563287v1}
  } 
size_categories:
  - 1K<n<10K
config_names:
  - KB02
  - KB03
  - KB05
configs:
  - config_name: KB02
    data_files:
      - split: test
        path: KB02_data/structure.test_KB02.csv
      - split: train
        path: KB02_data/structure.train_KB02.csv
      - split: validation
        path: KB02_data/structure.validation_KB02.csv
  - config_name: KB03
    data_files:
      - split: test
        path: KB03_data/structure.test_KB03.csv
      - split: train
        path: KB03_data/structure.train_KB03.csv
      - split: validation
        path: KB03_data/structure.validation_KB03.csv
  - config_name: KB05
    data_files:
      - split: test
        path: KB05_data/structure.test_KB05.csv
      - split: train
        path: KB05_data/structure.train_KB05.csv
      - split: validation
        path: KB05_data/structure.validation_KB05.csv
dataset_info:
  - config_name: KB02
    features:
      - name: uniprot_accession
        dtype: string
        description: Uniprot ID of Protein
      - name: pdb_id
        dtype: string
        description: PDB Structure ID of Protein
      - name: gene_names
        dtype: string
        description: Gene Names Associated with Uniprot ID of Protein
      - name: entry_name
        dtype: string
        description: Entry Name of Protein Associated with Uniprot ID
      - name: protein_names
        dtype: string
        description: Protein Names Associated with Uniprot ID of Protein
      - name: depth
        dtype: float64
        description: Depth of a Cystein in Protein Pocket (Å)
      - name: absolute_sasa
        dtype: float64
        description: Absolute Solvent Accessible Surface Area (Å^2)
      - name: hse_up
        dtype: int64
        description: Half-Sphere Exposure (up)
      - name: hse_down
        dtype: int64
        description: Half-Sphere Exposure (down)
      - name: coord_number
        dtype: int64
        description: coordination number
      - name: rsa
        dtype: float64
        description: Relative Solvent Accessible Surface Area (Å^2)
      - name: h_nho1
        dtype: float64
        description: >-
          Estimated h_nho1 energy (from database of secondary structure
          assignments in proteins-- DSSP)
      - name: h_ohn1
        dtype: float64
        description: Estimated h_ohn1 energy (DSSP)
      - name: h_nho2
        dtype: float64
        description: Estimated h_nho2 energy (DSSP)
      - name: h_ohn2
        dtype: float64
        description: Estimated h_ohn2 energy (DSSP)
      - name: tco
        dtype: float64
        description: TCO (DSSP)
      - name: kappa
        dtype: float64
        description: Kappa (DSSP)
      - name: alpha
        dtype: float64
        description: Alpha (DSSP)
      - name: phi
        dtype: float64
        description: Phi (DSSP)
      - name: psi
        dtype: float64
        description: Psi (DSSP)
      - name: pocket
        dtype: float64
        description: Pocket Volume (Å^3)
      - name: interface
        dtype: bool
        description: Cysteine Presence in Protein Interface (TRUE or FALSE)
      - name: basic
        dtype: float64
        description: Local Basic Content (Fraction of Local Neighbors)
      - name: acidic
        dtype: float64
        description: Local Acidic Content (Fraction of Local Neighbors)
      - name: polar
        dtype: float64
        description: Local Polar Content (Fraction of Local Neighbors)
      - name: cysteine
        dtype: float64
        description: Local Cysteine Content (Fraction of Local Neighbors)
      - name: structural
        dtype: float64
        description: Local Structural Content (Fraction of Local Neighbors)
      - name: aliphatic
        dtype: float64
        description: Local Aliphatic Content (Fraction of Local Neighbors)
      - name: aromatic
        dtype: float64
        description: Local Aromatic Content (Fraction of Local Neighbors)
      - name: is_active
        dtype: bool
        description: >-
          Probe Interaction Fraction Thresholded to Classify Cysteines as Active
          or Not (TRUE or FALSE)
      - name: struct_motif_B
        dtype: bool
        description: Presense of Structural Motif B (DSSP)
      - name: struct_motif_E
        dtype: bool
        description: Presense of Structural Motif E (DSSP)
      - name: struct_motif_G
        dtype: bool
        description: Presense of Structural Motif G (DSSP)
      - name: struct_motif_H
        dtype: bool
        description: Presense of Structural Motif H (DSSP)
      - name: struct_motif_I
        dtype: bool
        description: Presense of Structural Motif I (DSSP)
      - name: struct_motif_P
        dtype: bool
        description: Presense of Structural Motif P (DSSP)
      - name: struct_motif_S
        dtype: bool
        description: Presense of Structural Motif S (DSSP)
      - name: struct_motif_T
        dtype: bool
        description: Presense of Structural Motif T (DSSP)
      - name: ligand_name
        dtype: string
        description: Name of Probe Interacting with Cysteine
      - name: residue_number
        dtype: int64
        description: Residue Number of Cysteine
      - name: ligand_smiles
        dtype: string
        description: SMILES depiction of Probe Interacting with Cysteine
    splits:
      - name: train
        num_bytes: 979293
        num_examples: 4685
      - name: test
        num_bytes: 136187
        num_examples: 651
      - name: validation
        num_bytes: 245076
        num_examples: 1172

Cysteine Structure Database

The [Cysteine Structure Database] is a dataset compiled of strucutral data for 6515 cysteine sites in hundreds of proteins. This dataset was published in Cell and is also available at the official DrugMap Github repo.

For each cysteine site, this database includes numerical values for Solvent Accessible Surface Area (SASA), Cysteine Depth, etc. Additionally, each cysteine site has a probe engagement score derived from isotopic tandem orthogonal proteolysis-activity-based protein profiling (isoTOP-ABPP) that is represented as True or False in this dataset for three probes: KB02, KB03, KB05.

Probes

KB02

SMILES: COC1=CC=C2C(CCCN2C(CCl)=O)=C1 Depiction:

image/png

KB03

SMILES: FC(F)(F)C1=CC(C(F)(F)F)=CC(NC(CCl)=O)=C1 Depiction:

image/png

KB05

SMILES: O=C(C=C)N(C1=CC=C(Br)C=C1)C2=CC=CC=C2 Depiction:

image/png

Quickstart Usage

Load a Dataset in Python

Each subset can be loaded into python using the Huggingface datasets library. Install the datasets library

$ pip install datasets

then, in Python, load the datasets library

>>> import datasets

and load one of the Cysteine Structure Database datasets, e.g.,

>>> KB03_data = datasets.load_dataset('ymanasa2000/DrugMap_Ligandability', name='KB03')
Downloading readme: 100%|████████████████████████| 4.04k/4.04k [00:00<00:00, 281kB/s]
Downloading data: 100%|████████████████████████| 30.5k/30.5k [00:00<00:00, 470kB/s]
Downloading data: 100%|████████████████████████| 218k/218k [00:00<00:00, 2.55MB/s]
Downloading data: 100%|████████████████████████| 54.8k/54.8k [00:00<00:00, 915kB/s]
Generating test split: 100%|████████████████████████| 143/0 [00:00<00:00, 4939.35 examples/s]
Generating train split: 100%|████████████████████████| 1029/0 [00:00<00:00, 40692.99 examples/s]
Generating validation split: 100%|████████████████████████| 258/0 [00:00<00:00, 22803.78 examples/s]

Then, inspect the loaded dataset

>>> KB03_data
DatasetDict({
  test: Dataset({
      features: ['Unnamed: 0', 'site', 'depth', 'absolute_sasa', 'hse_up', 'hse_down', 'coord_number', 'rsa', 'h_nho1', 'h_ohn1', 'h_nho2', 'h_ohn2', 'tco', 'kappa', 'alpha', 'phi', 'psi', 'pocket', 'interface', 'basic', 'acidic', 'polar', 'cysteine', 'structural', 'aliphatic', 'aromatic', 'KB03', 'struct_motif_B', 'struct_motif_E', 'struct_motif_G', 'struct_motif_H', 'struct_motif_I', 'struct_motif_P', 'struct_motif_S', 'struct_motif_T'],
      num_rows: 143
  })
  train: Dataset({
      features: ['Unnamed: 0', 'site', 'depth', 'absolute_sasa', 'hse_up', 'hse_down', 'coord_number', 'rsa', 'h_nho1', 'h_ohn1', 'h_nho2', 'h_ohn2', 'tco', 'kappa', 'alpha', 'phi', 'psi', 'pocket', 'interface', 'basic', 'acidic', 'polar', 'cysteine', 'structural', 'aliphatic', 'aromatic', 'KB03', 'struct_motif_B', 'struct_motif_E', 'struct_motif_G', 'struct_motif_H', 'struct_motif_I', 'struct_motif_P', 'struct_motif_S', 'struct_motif_T'],
      num_rows: 1029
  })
  validation: Dataset({
      features: ['Unnamed: 0', 'site', 'depth', 'absolute_sasa', 'hse_up', 'hse_down', 'coord_number', 'rsa', 'h_nho1', 'h_ohn1', 'h_nho2', 'h_ohn2', 'tco', 'kappa', 'alpha', 'phi', 'psi', 'pocket', 'interface', 'basic', 'acidic', 'polar', 'cysteine', 'structural', 'aliphatic', 'aromatic', 'KB03', 'struct_motif_B', 'struct_motif_E', 'struct_motif_G', 'struct_motif_H', 'struct_motif_I', 'struct_motif_P', 'struct_motif_S', 'struct_motif_T'],
      num_rows: 258
  })

})

Use a Dataset to Train a Model

One way to use the dataset is by training a Baseline Random Forest Classifier to predict intereaction of a cysteine with one of the three probes (KB02, KB03, KB05). In this example, we will train and test on KB03 data.

First, install scikit-learn

>>> pip install scikit-learn

then load, split, featurize, fit and evaluate the Random Forest model

from sklearn.ensemble import RandomForestClassifier
import pandas as pd

KB03_data = datasets.load_dataset('ymanasa2000/DrugMap_Ligandability', name='KB03')

# split into train and test
KB03_train = KB03_data['train']
KB03_test = KB03_data['test']

train_set = pd.DataFrame(KB03_train)
test_set = pd.DataFrame(KB03_test)

# featurize
X_train = train_set.drop(columns=['site', 'KB03'])
y_train = train_set['KB03']

X_test = test_set.drop(columns=['site', 'KB03'])
y_test = test_set['KB03']

# fit
model_1 = RandomForestClassifier()
model_1.fit(X_train, y_train)

# evaluate 
print(model_1.score(X_test, y_test)) # output: 0.5944

About the Cysteine Structure Database

Features of the DB

This DB features a csv with structural data for ~6,500 bindable cysteines in hundreds of protein active sites. Each cysteine has structural data such as, numerical values for Solvent Accessible Surface Area (SASA), Cysteine Depth, etc. Additionally, this DB contains probe read-outs from an experiment described in Takahashi_et_al_2024. They integrated the isotopic tandem orthogonal proteolysis-activity-based protein profiling (isoTOP-ABPP) platform with tandem mass tag (TMT)-based mass spectrometry quantification (iso-TMT) to measure cysteine reactivity. In this approach, cell lysates are first treated with cysteine-reactive “scout” compounds or vehicle control, allowing reactive cysteines a chance to form covalent adducts, and then this is followed by a chase with a pan-cysteine-reactive probe (iodoacetamide-desthiobiotin DBIA), which reacts with all remaining free cysteine thiolate groups. Crucially, cysteines that reacted with the scout compound will escape being tagged by DBIA. Ligandable cysteines are defined as those that are engaged (ε-value) >60% by cysteine-reactive compounds.

Data splits

The authors of this dataset suggested using a Stratified Split via the train_test_split() method which was used to produce the datasets in this Hugging Face DB.

Citation

Please use the following citation in any publication using our Cysteine Structure Dataset:

@article{
    Takahashi_et_al_2024, 
    author={Takahashi, Chong, Harrison, Bar-Peled, et al},
    doi={10.1016/j.cell.2024.03.027},
    journal={Cell},
    number={10},
    month={May}
    title={DrugMap: A quantitative pan-cancer analysis of Cysteine ligandability},
    volume={187},
    year={2024}
    url = {https://www.biorxiv.org/content/10.1101/2023.10.20.563287v1}
  }