Datasets:
Tasks:
Text Retrieval
Sub-tasks:
document-retrieval
Languages:
English
Size:
1K<n<10K
ArXiv:
License:
File size: 8,437 Bytes
55ce402 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TNE: Text-based NP Enrichment"""
import json
import datasets
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{tne,
author = {Elazar, Yanai and Basmov, Victoria and Goldberg, Yoav and Tsarfaty, Reut},
title = "{Text-based NP Enrichment}",
journal = {Transactions of the Association for Computational Linguistics},
year = {2022},
}
"""
# You can copy an official description
_DESCRIPTION = """\
TNE is an NLU task, which focus on relations between noun phrases (NPs) that can be mediated via prepositions.
The dataset contains 5,497 documents, annotated exhaustively with all possible links between the NPs in each document.
"""
_HOMEPAGE = "https://yanaiela.github.io/TNE/"
_LICENSE = "MIT"
_VERSION = "v1.1"
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "https://github.com/yanaiela/TNE/raw/main/data/"
_URLS = {
"train": _URL + f"train-{_VERSION}.jsonl.gz",
"dev": _URL + f"dev-{_VERSION}.jsonl.gz",
"test_unlabeled": _URL + f"test_unlabeled-{_VERSION}.jsonl.gz",
"ood_unlabeled": _URL + f"ood_unlabeled-{_VERSION}.jsonl.gz",
}
class TNEDataset(datasets.GeneratorBasedBuilder):
"""TNE: Text-based NP Enrichment"""
VERSION = datasets.Version("1.1.0")
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"nps": [
{
"text": datasets.Value("string"),
"first_char": datasets.Value("int32"),
"last_char": datasets.Value("int32"),
"first_token": datasets.Value("int32"),
"last_token": datasets.Value("int32"),
"id": datasets.Value("string"),
}
],
"np_relations": [
{
"anchor": datasets.Value("string"),
"complement": datasets.Value("string"),
"preposition": datasets.features.ClassLabel(
names=[
"about",
"for",
"with",
"from",
"among",
"by",
"on",
"at",
"during",
"of",
"member(s) of",
"in",
"after",
"under",
"to",
"into",
"before",
"near",
"outside",
"around",
"between",
"against",
"over",
"inside",
]
),
"complement_coref_cluster_id": datasets.Value("string"),
}
],
"coref": [
{
"id": datasets.Value("string"),
"members": datasets.Sequence(datasets.Value("string")),
"np_type": datasets.features.ClassLabel(
names=[
"standard",
"time/date/measurement",
"idiomatic",
]
),
}
],
"metadata": {
"annotators": {
"coref_worker": datasets.Value("int32"),
"consolidator_worker": datasets.Value("int32"),
"np-relations_worker": datasets.Sequence(datasets.Value("int32")),
},
"url": datasets.Value("string"),
"source": datasets.Value("string"),
},
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["dev"],
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": data_dir["test_unlabeled"], "split": "test_unlabeled"},
),
datasets.SplitGenerator(
name=datasets.Split("test_ood"),
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": data_dir["ood_unlabeled"], "split": "ood_unlabeled"},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
with open(filepath, "r", encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
ex_id = data["id"]
text = data["text"]
tokens = data["tokens"]
nps = data["nps"]
if split in ["test_unlabeled", "ood_unlabeled"]:
np_relations = []
else:
np_relations = data["np_relations"]
coref = data["coref"]
metadata = data["metadata"]
yield key, {
"id": ex_id,
"text": text,
"tokens": tokens,
"nps": nps,
"np_relations": np_relations,
"coref": coref,
"metadata": metadata,
}
|