File size: 24,340 Bytes
12bf5e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
[
{
"problem_text": "The change in molar internal energy when $\\mathrm{CaCO}_3(\\mathrm{~s})$ as calcite converts to another form, aragonite, is $+0.21 \\mathrm{~kJ} \\mathrm{~mol}^{-1}$. Calculate the difference between the molar enthalpy and internal energy changes when the pressure is 1.0 bar given that the densities of the polymorphs are $2.71 \\mathrm{~g} \\mathrm{~cm}^{-3}$ and $2.93 \\mathrm{~g} \\mathrm{~cm}^{-3}$, respectively.",
"answer_latex": " -0.28",
"answer_number": "-0.28",
"unit": " $\\mathrm{~Pa} \\mathrm{~m}^3 \\mathrm{~mol}^{-1}$",
"source": "atkins",
"problemid": " 2.2",
"comment": " ",
"solution": "The change in enthalpy when the transition occurs is\r\n$$\r\n\\begin{aligned}\r\n\\Delta H_{\\mathrm{m}} & =H_{\\mathrm{m}}(\\text { aragonite })-H_{\\mathrm{m}}(\\text { calcite }) \\\\\r\n& =\\left\\{U_{\\mathrm{m}}(\\mathrm{a})+p V_{\\mathrm{m}}(\\mathrm{a})\\right\\}-\\left\\{U_{\\mathrm{m}}(\\mathrm{c})+p V_{\\mathrm{m}}(\\mathrm{c})\\right\\} \\\\\r\n& =\\Delta U_{\\mathrm{m}}+p\\left\\{V_{\\mathrm{m}}(\\mathrm{a})-V_{\\mathrm{m}}(\\mathrm{c})\\right\\}\r\n\\end{aligned}\r\n$$\r\nwhere a denotes aragonite and c calcite. It follows by substituting $V_{\\mathrm{m}}=M / \\rho$ that\r\n$$\r\n\\Delta H_{\\mathrm{m}}-\\Delta U_{\\mathrm{m}}=p M\\left(\\frac{1}{\\rho(\\mathrm{a})}-\\frac{1}{\\rho(\\mathrm{c})}\\right)\r\n$$\r\nSubstitution of the data, using $M=100 \\mathrm{~g} \\mathrm{~mol}^{-1}$, gives\r\n$$\r\n\\begin{aligned}\r\n\\Delta H_{\\mathrm{m}}-\\Delta U_{\\mathrm{m}} & =\\left(1.0 \\times 10^5 \\mathrm{~Pa}\\right) \\times\\left(100 \\mathrm{~g} \\mathrm{~mol}^{-1}\\right) \\times\\left(\\frac{1}{2.93 \\mathrm{~g} \\mathrm{~cm}^{-3}}-\\frac{1}{2.71 \\mathrm{~g} \\mathrm{~cm}^{-3}}\\right) \\\\\r\n& =-2.8 \\times 10^5 \\mathrm{~Pa} \\mathrm{~cm}{ }^3 \\mathrm{~mol}^{-1}=-0.28 \\mathrm{~Pa} \\mathrm{~m}^3 \\mathrm{~mol}^{-1}\r\n\\end{aligned}\r\n$$"
},
{
"problem_text": "Estimate the molar volume of $\\mathrm{CO}_2$ at $500 \\mathrm{~K}$ and 100 atm by treating it as a van der Waals gas.",
"answer_latex": " 0.366",
"answer_number": "0.366",
"unit": " $\\mathrm{dm}^3\\mathrm{~mol}^{-1}$",
"source": "atkins",
"problemid": " 1.4",
"comment": " ",
"solution": "\nAccording to Table $$\n\\begin{array}{lll}\n\\hline & \\boldsymbol{a} /\\left(\\mathbf{a t m} \\mathbf{d m}^6 \\mathrm{~mol}^{-2}\\right) & \\boldsymbol{b} /\\left(\\mathbf{1 0}^{-2} \\mathrm{dm}^3 \\mathrm{~mol}^{-1}\\right) \\\\\n\\hline \\mathrm{Ar} & 1.337 & 3.20 \\\\\n\\mathrm{CO}_2 & 3.610 & 4.29 \\\\\n\\mathrm{He} & 0.0341 & 2.38 \\\\\n\\mathrm{Xe} & 4.137 & 5.16 \\\\\n\\hline\n\\end{array}\n$$, $a=3.610 \\mathrm{dm}^6 \\mathrm{~atm} \\mathrm{~mol}^{-2}$ and $b=4.29 \\times 10^{-2} \\mathrm{dm}^3$ $\\mathrm{mol}^{-1}$. Under the stated conditions, $R T / p=0.410 \\mathrm{dm}^3 \\mathrm{~mol}^{-1}$. The coefficients in the equation for $V_{\\mathrm{m}}$ are therefore\r\n$$\r\n\\begin{aligned}\r\n& b+R T / p=0.453 \\mathrm{dm}^3 \\mathrm{~mol}^{-1} \\\\\r\n& a / p=3.61 \\times 10^{-2}\\left(\\mathrm{dm}^3 \\mathrm{~mol}^{-1}\\right)^2 \\\\\r\n& a b / p=1.55 \\times 10^{-3}\\left(\\mathrm{dm}^3 \\mathrm{~mol}^{-1}\\right)^3\r\n\\end{aligned}\r\n$$\r\nTherefore, on writing $x=V_{\\mathrm{m}} /\\left(\\mathrm{dm}^3 \\mathrm{~mol}^{-1}\\right)$, the equation to solve is\r\n$$\r\nx^3-0.453 x^2+\\left(3.61 \\times 10^{-2}\\right) x-\\left(1.55 \\times 10^{-3}\\right)=0\r\n$$\r\nThe acceptable root is $x=0.366$, which implies that $V_{\\mathrm{m}}=0.366 \\mathrm{dm}^3 \\mathrm{~mol}^{-1}$."
},
{
"problem_text": "Suppose the concentration of a solute decays exponentially along the length of a container. Calculate the thermodynamic force on the solute at $25^{\\circ} \\mathrm{C}$ given that the concentration falls to half its value in $10 \\mathrm{~cm}$.",
"answer_latex": " 17",
"answer_number": "17",
"unit": " $\\mathrm{kN} \\mathrm{mol}^{-1}$",
"source": "atkins",
"problemid": " 20.3",
"comment": " ",
"solution": "\nThe concentration varies with position as\r\n$$\r\nc=c_0 \\mathrm{e}^{-x / \\lambda}\r\n$$\r\nwhere $\\lambda$ is the decay constant. Therefore,\r\n$$\r\n\\frac{\\mathrm{d} c}{\\mathrm{~d} x}=-\\frac{c}{\\lambda}\r\n$$\r\nFrom Equation $$\n\n\\mathcal{F}=-\\frac{R T}{c}\\left(\\frac{\\partial c}{\\partial x}\\right)_{p, T}\n\n$$ then implies that\r\n$$\r\n\\mathcal{F}=\\frac{R T}{\\lambda}\r\n$$\r\nWe know that the concentration falls to $\\frac{1}{2} c_0$ at $x=10 \\mathrm{~cm}$, so we can find $\\lambda$ from $\\frac{1}{2}=\\mathrm{e}^{-(10 \\mathrm{~cm}) / \\lambda}$. That is $\\lambda=(10 \\mathrm{~cm} / \\ln 2)$. It follows that\r\n$$\r\n\\mathcal{F}=\\left(8.3145 \\mathrm{~J} \\mathrm{~K}^{-1} \\mathrm{~mol}^{-1}\\right) \\times(298 \\mathrm{~K}) \\times \\ln 2 /\\left(1.0 \\times 10^{-1} \\mathrm{~m}\\right)=17 \\mathrm{kN} \\mathrm{mol}^{-1}\r\n$$\r\nwhere we have used $1 \\mathrm{~J}=1 \\mathrm{~N} \\mathrm{~m}$."
},
{
"problem_text": "A container is divided into two equal compartments. One contains $3.0 \\mathrm{~mol} \\mathrm{H}_2(\\mathrm{~g})$ at $25^{\\circ} \\mathrm{C}$; the other contains $1.0 \\mathrm{~mol} \\mathrm{~N}_2(\\mathrm{~g})$ at $25^{\\circ} \\mathrm{C}$. Calculate the Gibbs energy of mixing when the partition is removed. Assume perfect behaviour.",
"answer_latex": " -6.9",
"answer_number": "-6.9",
"unit": " $\\mathrm{~kJ}$",
"source": "atkins",
"problemid": " 5.2",
"comment": " ",
"solution": "Given that the pressure of nitrogen is $p$, the pressure of hydrogen is $3 p$; therefore, the initial Gibbs energy is\r\n$$\r\nG_{\\mathrm{i}}=(3.0 \\mathrm{~mol})\\left\\{\\mu^{\\ominus}\\left(\\mathrm{H}_2\\right)+R T \\ln 3 p\\right\\}+(1.0 \\mathrm{~mol})\\left\\{\\mu^{\\ominus}\\left(\\mathrm{N}_2\\right)+R T \\ln p\\right\\}\r\n$$\r\nWhen the partition is removed and each gas occupies twice the original volume, the partial pressure of nitrogen falls to $\\frac{1}{2} p$ and that of hydrogen falls to $\\frac{3}{2} p$. Therefore, the Gibbs energy changes to\r\n$$\r\nG_{\\mathrm{f}}=(3.0 \\mathrm{~mol})\\left\\{\\mu^{\\ominus}\\left(\\mathrm{H}_2\\right)+R T \\ln \\frac{3}{2} p\\right\\}+(1.0 \\mathrm{~mol})\\left\\{\\mu^{\\ominus}\\left(\\mathrm{N}_2\\right)+R T \\ln \\frac{1}{2} p\\right\\}\r\n$$\r\nThe Gibbs energy of mixing is the difference of these two quantities:\r\n$$\r\n\\begin{aligned}\r\n\\Delta_{\\text {mix }} G & =(3.0 \\mathrm{~mol}) R T \\ln \\left(\\frac{\\frac{3}{2} p}{3 p}\\right)+(1.0 \\mathrm{~mol}) R T \\ln \\left(\\frac{\\frac{1}{2} p}{p}\\right) \\\\\r\n& =-(3.0 \\mathrm{~mol}) R T \\ln 2-(1.0 \\mathrm{~mol}) R T \\ln 2 \\\\\r\n& =-(4.0 \\mathrm{~mol}) R T \\ln 2=-6.9 \\mathrm{~kJ}\r\n\\end{aligned}\r\n$$\r\n"
},
{
"problem_text": "What is the mean speed, $\\bar{c}$, of $\\mathrm{N}_2$ molecules in air at $25^{\\circ} \\mathrm{C}$ ?",
"answer_latex": " 475",
"answer_number": "475",
"unit": " $\\mathrm{~m} \\mathrm{~s}^{-1}$",
"source": "atkins",
"problemid": " 20.1",
"comment": " ",
"solution": "The integral required is\r\n$$\r\n\\begin{aligned}\r\n\\bar{c} & =4 \\pi\\left(\\frac{M}{2 \\pi R T}\\right)^{3 / 2} \\int_0^{\\infty} v^3 \\mathrm{e}^{-M v^2 / 2 R T} \\mathrm{~d} v \\\\\r\n& =4 \\pi\\left(\\frac{M}{2 \\pi R T}\\right)^{3 / 2} \\times \\frac{1}{2}\\left(\\frac{2 R T}{M}\\right)^2=\\left(\\frac{8 R T}{\\pi M}\\right)^{1 / 2}\r\n\\end{aligned}\r\n$$\r\nwhere we have used the standard result from tables of integrals (or software) that\r\n$$\r\n\\int_0^{\\infty} x^3 \\mathrm{e}^{-a x^2} \\mathrm{~d} x=\\frac{1}{2 a^2}\r\n$$\r\nSubstitution of the data then gives\r\n$$\r\n\\bar{c}=\\left(\\frac{8 \\times\\left(8.3141 \\mathrm{~J} \\mathrm{~K}^{-1} \\mathrm{~mol}^{-1}\\right) \\times(298 \\mathrm{~K})}{\\pi \\times\\left(28.02 \\times 10^{-3} \\mathrm{~kg} \\mathrm{~mol}^{-1}\\right)}\\right)^{1 / 2}=475 \\mathrm{~m} \\mathrm{~s}^{-1}\r\n$$\r\nwhere we have used $1 \\mathrm{~J}=1 \\mathrm{~kg} \\mathrm{~m}^2 \\mathrm{~s}^{-2}$.\r\n"
},
{
"problem_text": "Caesium (m.p. $29^{\\circ} \\mathrm{C}$, b.p. $686^{\\circ} \\mathrm{C}$ ) was introduced into a container and heated to $500^{\\circ} \\mathrm{C}$. When a hole of diameter $0.50 \\mathrm{~mm}$ was opened in the container for $100 \\mathrm{~s}$, a mass loss of $385 \\mathrm{mg}$ was measured. Calculate the vapour pressure of liquid caesium at $500 \\mathrm{~K}$.",
"answer_latex": " 8.7",
"answer_number": "8.7",
"unit": " $\\mathrm{kPa}$",
"source": "atkins",
"problemid": " 20.2",
"comment": " ",
"solution": "\nThe mass loss $\\Delta m$ in an interval $\\Delta t$ is related to the collision flux by\r\n$$\r\n\\Delta m=Z_{\\mathrm{W}} A_0 m \\Delta t\r\n$$\r\nwhere $A_0$ is the area of the hole and $m$ is the mass of one atom. It follows that\r\n$$\r\nZ_{\\mathrm{W}}=\\frac{\\Delta m}{A_0 m \\Delta t}\r\n$$\r\nBecause $Z_{\\mathrm{W}}$ is related to the pressure by eqn $$\nZ_{\\mathrm{W}}=\\frac{p}{(2 \\pi m k T)^{1 / 2}}\n$$, we can write\r\n$$\r\np=\\left(\\frac{2 \\pi R T}{M}\\right)^{1 / 2} \\frac{\\Delta m}{A_0 \\Delta t}\r\n$$\r\nBecause $M=132.9 \\mathrm{~g} \\mathrm{~mol}^{-1}$, substitution of the data gives $p=8.7 \\mathrm{kPa}$ (using $1 \\mathrm{~Pa}=$ $\\left.1 \\mathrm{~N} \\mathrm{~m}^{-2}=1 \\mathrm{~J} \\mathrm{~m}^{-1}\\right)$.\n"
},
{
"problem_text": "To get an idea of the distance dependence of the tunnelling current in STM, suppose that the wavefunction of the electron in the gap between sample and needle is given by $\\psi=B \\mathrm{e}^{-\\kappa x}$, where $\\kappa=\\left\\{2 m_{\\mathrm{e}}(V-E) / \\hbar^2\\right\\}^{1 / 2}$; take $V-E=2.0 \\mathrm{eV}$. By what factor would the current drop if the needle is moved from $L_1=0.50 \\mathrm{~nm}$ to $L_2=0.60 \\mathrm{~nm}$ from the surface?",
"answer_latex": " 0.23",
"answer_number": "0.23",
"unit": " ",
"source": "atkins",
"problemid": " 8.2",
"comment": " ",
"solution": "\nWhen $L=L_1=0.50 \\mathrm{~nm}$ and $V-E=2.0 \\mathrm{eV}=3.20 \\times 10^{-19} \\mathrm{~J}$ the value of $\\kappa L$ is\r\n$$\r\n\\begin{aligned}\r\n\\kappa L_1 & =\\left\\{\\frac{2 m_{\\mathrm{e}}(V-E)}{\\hbar^2}\\right\\}^{1 / 2} L_1 \\\\\r\n& =\\left\\{\\frac{2 \\times\\left(9.109 \\times 10^{-31} \\mathrm{~kg}\\right) \\times\\left(3.20 \\times 10^{-19} \\mathrm{~J}\\right)}{\\left(1.054 \\times 10^{-34} \\mathrm{~J} \\mathrm{~s}\\right)^2}\\right\\}^{1 / 2} \\times\\left(5.0 \\times 10^{-10} \\mathrm{~m}\\right) \\\\\r\n& =\\left(7.25 \\times 10^9 \\mathrm{~m}^{-1}\\right) \\times\\left(5.0 \\times 10^{-10} \\mathrm{~m}\\right)=3.6\r\n\\end{aligned}\r\n$$\r\nBecause $\\kappa L_1>1$, we use eqn $T\\approx 16 \\varepsilon(1-\\varepsilon) \\mathrm{e}^{-2 \\kappa L}$ to calculate the transmission probabilities at the two distances. It follows that\r\n$$\r\n\\text { current at } \\begin{aligned}\r\n\\frac{L_2}{\\text { current at } L_1} & =\\frac{T\\left(L_2\\right)}{T\\left(L_1\\right)}=\\frac{16 \\varepsilon(1-\\varepsilon) \\mathrm{e}^{-2 \\kappa L_2}}{16 \\varepsilon(1-\\varepsilon) \\mathrm{e}^{-2 \\kappa L_1}}=\\mathrm{e}^{-2 \\kappa\\left(L_2-L_1\\right)} \\\\\r\n& =\\mathrm{e}^{-2 \\times\\left(7.25 \\times 10^{-9} \\mathrm{~m}^{-1}\\right) \\times\\left(1.0 \\times 10^{-10} \\mathrm{~m}\\right)}=0.23\r\n\\end{aligned}\r\n$$"
},
{
"problem_text": "Calculate the typical wavelength of neutrons that have reached thermal equilibrium with their surroundings at $373 \\mathrm{~K}$.\r\n",
"answer_latex": " 226",
"answer_number": "226",
"unit": " $\\mathrm{pm}$",
"source": "atkins",
"problemid": " 19.4",
"comment": " ",
"solution": "From the equipartition principle, we know that the mean translational kinetic energy of a neutron at a temperature $T$ travelling in the $x$-direction is $E_{\\mathrm{k}}=\\frac{1}{2} k T$. The kinetic energy is also equal to $p^2 / 2 m$, where $p$ is the momentum of the neutron and $m$ is its mass. Hence, $p=(m k T)^{1 / 2}$. It follows from the de Broglie relation $\\lambda=h / p$ that the neutron's wavelength is\r\n$$\r\n\\lambda=\\frac{h}{(m k T)^{1 / 2}}\r\n$$\r\nTherefore, at $373 \\mathrm{~K}$,\r\n$$\r\n\\begin{aligned}\r\n\\lambda & =\\frac{6.626 \\times 10^{-34} \\mathrm{~J} \\mathrm{~s}}{\\left\\{\\left(1.675 \\times 10^{-27} \\mathrm{~kg}\\right) \\times\\left(1.381 \\times 10^{-23} \\mathrm{~J} \\mathrm{~K}^{-1}\\right) \\times(373 \\mathrm{~K})\\right\\}^{1 / 2}} \\\\\r\n& =\\frac{6.626 \\times 10^{-34} \\mathrm{~J} \\mathrm{~s}}{\\left(1.675 \\times 1.381 \\times 373 \\times 10^{-50}\\right)^{1 / 2}\\left(\\mathrm{~kg}^2 \\mathrm{~m}^2 \\mathrm{~s}^{-2}\\right)^{1 / 2}} \\\\\r\n& =2.26 \\times 10^{-10} \\mathrm{~m}=226 \\mathrm{pm}\r\n\\end{aligned}"
},
{
"problem_text": "Calculate the separation of the $\\{123\\}$ planes of an orthorhombic unit cell with $a=0.82 \\mathrm{~nm}, b=0.94 \\mathrm{~nm}$, and $c=0.75 \\mathrm{~nm}$.",
"answer_latex": " 0.21",
"answer_number": "0.21",
"unit": " $\\mathrm{~nm}$",
"source": "atkins",
"problemid": " 19.1",
"comment": " ",
"solution": "\nFor the first part, simply substitute the information into eqn $$\n\\frac{1}{d_{h k l}^2}=\\frac{h^2}{a^2}+\\frac{k^2}{b^2}+\\frac{l^2}{c^2}\n$$. For the second part, instead of repeating the calculation, note that, if all three Miller indices are multiplied by $n$, then their separation is reduced by that factor:\r\n$$\r\n\\frac{1}{d_{n h, n k, n l}^2}=\\frac{(n h)^2}{a^2}+\\frac{(n k)^2}{b^2}+\\frac{(n l)^2}{c^2}=n^2\\left(\\frac{h^2}{a^2}+\\frac{k^2}{b^2}+\\frac{l^2}{c^2}\\right)=\\frac{n^2}{d_{h k l}^2}\r\n$$\r\nwhich implies that\r\n$$\r\nd_{n h, n k, n l}=\\frac{d_{h k l}}{n}\r\n$$\r\nAnswer Substituting the indices into eqn $$\n\\frac{1}{d_{h k l}^2}=\\frac{h^2}{a^2}+\\frac{k^2}{b^2}+\\frac{l^2}{c^2}\n$$ gives\r\n$$\r\n\\frac{1}{d_{123}^2}=\\frac{1^2}{(0.82 \\mathrm{~nm})^2}+\\frac{2^2}{(0.94 \\mathrm{~nm})^2}+\\frac{3^2}{(0.75 \\mathrm{~nm})^2}=0.22 \\mathrm{~nm}^{-2}\r\n$$\r\nHence, $d_{123}=0.21 \\mathrm{~nm}$.\n"
},
{
"problem_text": "Calculate the moment of inertia of an $\\mathrm{H}_2 \\mathrm{O}$ molecule around the axis defined by the bisector of the $\\mathrm{HOH}$ angle (3). The $\\mathrm{HOH}$ bond angle is $104.5^{\\circ}$ and the bond length is $95.7 \\mathrm{pm}$.",
"answer_latex": " 1.91",
"answer_number": "1.91",
"unit": " $10^{-47} \\mathrm{~kg} \\mathrm{~m}^2$",
"source": "atkins",
"problemid": "12.1",
"comment": " ",
"solution": "\n$$\r\nI=\\sum_i m_i x_i^2=m_{\\mathrm{H}} x_{\\mathrm{H}}^2+0+m_{\\mathrm{H}} x_{\\mathrm{H}}^2=2 m_{\\mathrm{H}} x_{\\mathrm{H}}^2\r\n$$\r\nIf the bond angle of the molecule is denoted $2 \\phi$ and the bond length is $R$, trigonometry gives $x_{\\mathrm{H}}=R \\sin \\phi$. It follows that\r\n$$\r\nI=2 m_{\\mathrm{H}} R^2 \\sin ^2 \\phi\r\n$$\r\nSubstitution of the data gives\r\n$$\r\n\\begin{aligned}\r\nI & =2 \\times\\left(1.67 \\times 10^{-27} \\mathrm{~kg}\\right) \\times\\left(9.57 \\times 10^{-11} \\mathrm{~m}\\right)^2 \\times \\sin ^2\\left(\\frac{1}{2} \\times 104.5^{\\circ}\\right) \\\\\r\n& =1.91 \\times 10^{-47} \\mathrm{~kg} \\mathrm{~m}^2\r\n\\end{aligned}\r\n$$\r\nNote that the mass of the $\\mathrm{O}$ atom makes no contribution to the moment of inertia for this mode of rotation as the atom is immobile while the $\\mathrm{H}$ atoms circulate around it.\n"
},
{
"problem_text": "The data below show the temperature variation of the equilibrium constant of the reaction $\\mathrm{Ag}_2 \\mathrm{CO}_3(\\mathrm{~s}) \\rightleftharpoons \\mathrm{Ag}_2 \\mathrm{O}(\\mathrm{s})+\\mathrm{CO}_2(\\mathrm{~g})$. Calculate the standard reaction enthalpy of the decomposition.\r\n$\\begin{array}{lllll}T / \\mathrm{K} & 350 & 400 & 450 & 500 \\\\ K & 3.98 \\times 10^{-4} & 1.41 \\times 10^{-2} & 1.86 \\times 10^{-1} & 1.48\\end{array}$",
"answer_latex": " +80",
"answer_number": "+80",
"unit": " $\\mathrm{~kJ} \\mathrm{~mol}^{-1}$",
"source": "atkins",
"problemid": " 6.3",
"comment": " ",
"solution": "\nWe draw up the following table:\r\n$\\begin{array}{lllll}T / \\mathrm{K} & 350 & 400 & 450 & 500 \\\\ \\left(10^3 \\mathrm{~K}\\right) / T & 2.86 & 2.50 & 2.22 & 2.00 \\\\ -\\ln K & 7.83 & 4.26 & 1.68 & -0.39\\end{array}$\r\nBy plotting these points, the slope of the graph is $+9.6 \\times 10^3$, so\r\n$$\r\n\\Delta_{\\mathrm{r}} H^{\\ominus}=\\left(+9.6 \\times 10^3 \\mathrm{~K}\\right) \\times R=+80 \\mathrm{~kJ} \\mathrm{~mol}^{-1}\r\n$$\n"
},
{
"problem_text": "The osmotic pressures of solutions of poly(vinyl chloride), PVC, in cyclohexanone at $298 \\mathrm{~K}$ are given below. The pressures are expressed in terms of the heights of solution (of mass density $\\rho=0.980 \\mathrm{~g} \\mathrm{~cm}^{-3}$ ) in balance with the osmotic pressure. Determine the molar mass of the polymer.\r\n$\\begin{array}{llllll}c /\\left(\\mathrm{g} \\mathrm{dm}^{-3}\\right) & 1.00 & 2.00 & 4.00 & 7.00 & 9.00 \\\\ h / \\mathrm{cm} & 0.28 & 0.71 & 2.01 & 5.10 & 8.00\\end{array}$\r\n",
"answer_latex": " 1.2",
"answer_number": "1.2",
"unit": " $10^2 \\mathrm{~kg} \\mathrm{~mol}^{-1}$",
"source": "atkins",
"problemid": " 5.4",
"comment": " ",
"solution": "\nThe data give the following values for the quantities to plot:\r\n$$\r\n\\begin{array}{llllll}\r\nc /\\left(\\mathrm{g} \\mathrm{dm}^{-3}\\right) & 1.00 & 2.00 & 4.00 & 7.00 & 9.00 \\\\\r\n(h / c) /\\left(\\mathrm{cm} \\mathrm{g}^{-1} \\mathrm{dm}^3\\right) & 0.28 & 0.36 & 0.503 & 0.729 & 0.889\r\n\\end{array}\r\n$$\r\nBy plotting these points,the intercept is at 0.21 . Therefore,\r\n$$\r\n\\begin{aligned}\r\nM & =\\frac{R T}{\\rho g} \\times \\frac{1}{0.21 \\mathrm{~cm} \\mathrm{~g}^{-1} \\mathrm{dm}^3} \\\\\r\n& =\\frac{\\left(8.3145 \\mathrm{~J} \\mathrm{~K}^{-1} \\mathrm{~mol}^{-1}\\right) \\times(298 \\mathrm{~K})}{\\left(980 \\mathrm{~kg} \\mathrm{~m}^{-1}\\right) \\times\\left(9.81 \\mathrm{~m} \\mathrm{~s}^{-2}\\right)} \\times \\frac{1}{2.1 \\times 10^{-3} \\mathrm{~m}^4 \\mathrm{~kg}^{-1}} \\\\\r\n& =1.2 \\times 10^2 \\mathrm{~kg} \\mathrm{~mol}^{-1}\r\n\\end{aligned}\r\n$$"
},
{
"problem_text": "Estimate the wavelength of electrons that have been accelerated from rest through a potential difference of $40 \\mathrm{kV}$.",
"answer_latex": " 6.1",
"answer_number": "6.1",
"unit": " $10^{-12} \\mathrm{~m}$",
"source": "atkins",
"problemid": " 7.2",
"comment": " ",
"solution": " The expression $p^2 / 2 m_{\\mathrm{e}}=e \\Delta \\phi$ solves to $p=\\left(2 m_{\\mathrm{e}} e \\Delta \\phi\\right)^{1 / 2}$; then, from the de Broglie relation $\\lambda=h / p$,\r\n$$\r\n\\lambda=\\frac{h}{\\left(2 m_{\\mathrm{e}} e \\Delta \\phi\\right)^{1 / 2}}\r\n$$\r\nSubstitution of the data and the fundamental constants (from inside the front cover) gives\r\n$$\r\n\\begin{aligned}\r\n\\lambda & =\\frac{6.626 \\times 10^{-34} \\mathrm{~J} \\mathrm{~s}}{\\left\\{2 \\times\\left(9.109 \\times 10^{-31} \\mathrm{~kg}\\right) \\times\\left(1.602 \\times 10^{-19} \\mathrm{C}\\right) \\times\\left(4.0 \\times 10^4 \\mathrm{~V}\\right)\\right\\}^{1 / 2}} \\\\\r\n& =6.1 \\times 10^{-12} \\mathrm{~m}\r\n\\end{aligned}\r\n$$\r\n"
},
{
"problem_text": "The standard enthalpy of formation of $\\mathrm{H}_2 \\mathrm{O}(\\mathrm{g})$ at $298 \\mathrm{~K}$ is $-241.82 \\mathrm{~kJ} \\mathrm{~mol}^{-1}$. Estimate its value at $100^{\\circ} \\mathrm{C}$ given the following values of the molar heat capacities at constant pressure: $\\mathrm{H}_2 \\mathrm{O}(\\mathrm{g}): 33.58 \\mathrm{~J} \\mathrm{~K}^{-1} \\mathrm{~mol}^{-1} ; \\mathrm{H}_2(\\mathrm{~g}): 28.82 \\mathrm{~J} \\mathrm{~K}^{-1} \\mathrm{~mol}^{-1} ; \\mathrm{O}_2(\\mathrm{~g})$ : $29.36 \\mathrm{~J} \\mathrm{~K}^{-1} \\mathrm{~mol}^{-1}$. Assume that the heat capacities are independent of temperature.",
"answer_latex": "-242.6 ",
"answer_number": "-242.6",
"unit": " $\\mathrm{~kJ} \\mathrm{~mol}^{-1}$",
"source": "atkins",
"problemid": " 2.6",
"comment": " ",
"solution": "The reaction is $\\mathrm{H}_2(\\mathrm{~g})+\\frac{1}{2} \\mathrm{O}_2(\\mathrm{~g}) \\rightarrow \\mathrm{H}_2 \\mathrm{O}(\\mathrm{g})$, so\r\n$$\r\n\\Delta_{\\mathrm{r}} C_p^{\\ominus}=C_{p, \\mathrm{~m}}^{\\ominus}\\left(\\mathrm{H}_2 \\mathrm{O}, \\mathrm{g}\\right)-\\left\\{C_{p, \\mathrm{~m}}^{\\ominus}\\left(\\mathrm{H}_2, \\mathrm{~g}\\right)+\\frac{1}{2} C_{p, \\mathrm{~m}}^{\\ominus}\\left(\\mathrm{O}_2, \\mathrm{~g}\\right)\\right\\}=-9.92 \\mathrm{~J} \\mathrm{~K}^{-1} \\mathrm{~mol}^{-1}\r\n$$\r\nIt then follows that\r\n$$\r\n\\Delta_{\\mathrm{r}} H^{\\ominus}(373 \\mathrm{~K})=-241.82 \\mathrm{~kJ} \\mathrm{~mol}^{-1}+(75 \\mathrm{~K}) \\times\\left(-9.92 \\mathrm{~J} \\mathrm{~K}^{-1} \\mathrm{~mol}^{-1}\\right)=-242.6 \\mathrm{~kJ} \\mathrm{~mol}^{-1}\r\n$$\r\n"
},
{
"problem_text": "The standard potential of the cell $\\mathrm{Pt}(\\mathrm{s})\\left|\\mathrm{H}_2(\\mathrm{~g})\\right| \\mathrm{HBr}(\\mathrm{aq})|\\operatorname{AgBr}(\\mathrm{s})| \\mathrm{Ag}(\\mathrm{s})$ was measured over a range of temperatures, and the data were found to fit the following polynomial:\r\n$$\r\nE_{\\text {cell }}^{\\bullet} / \\mathrm{V}=0.07131-4.99 \\times 10^{-4}(T / \\mathrm{K}-298)-3.45 \\times 10^{-6}(\\mathrm{~T} / \\mathrm{K}-298)^2\r\n$$\r\nThe cell reaction is $\\operatorname{AgBr}(\\mathrm{s})+\\frac{1}{2} \\mathrm{H}_2(\\mathrm{~g}) \\rightarrow \\mathrm{Ag}(\\mathrm{s})+\\mathrm{HBr}(\\mathrm{aq})$. Evaluate the standard reaction enthalpy at $298 \\mathrm{~K}$.",
"answer_latex": " -21.2",
"answer_number": "-21.2",
"unit": " $\\mathrm{~kJ} \\mathrm{~mol}^{-1}$",
"source": "atkins",
"problemid": " 6.5",
"comment": " ",
"solution": "\nAt $T=298 \\mathrm{~K}, E_{\\text {cell }}^{\\ominus}=+0.07131 \\mathrm{~V}$, so\r\n$$\r\n\\begin{aligned}\r\n\\Delta_{\\mathrm{r}} G^{\\ominus} & =-v F E_{\\text {cell }}^{\\ominus}=-(1) \\times\\left(9.6485 \\times 10^4 \\mathrm{Cmol}^{-1}\\right) \\times(+0.07131 \\mathrm{~V}) \\\\\r\n& =-6.880 \\times 10^3 \\mathrm{~V} \\mathrm{Cmol}^{-1}=-6.880 \\mathrm{~kJ} \\mathrm{~mol}^{-1}\r\n\\end{aligned}\r\n$$\r\nThe temperature coefficient of the cell potential is\r\n$$\r\n\\frac{\\mathrm{d} E_{\\text {cell }}^{\\ominus}}{\\mathrm{d} T}=-4.99 \\times 10^{-4} \\mathrm{~V} \\mathrm{~K}^{-1}-2\\left(3.45 \\times 10^{-6}\\right)(T / \\mathrm{K}-298) \\mathrm{V} \\mathrm{K}^{-1}\r\n$$\r\nAt $T=298 \\mathrm{~K}$ this expression evaluates to\r\n$$\r\n\\frac{\\mathrm{d} E_{\\text {cell }}^{\\ominus}}{\\mathrm{d} T}=-4.99 \\times 10^{-4} \\mathrm{~V} \\mathrm{~K}^{-1}\r\n$$\r\nSo, from eqn $$\n\\frac{\\mathrm{d} E_{\\text {cell }}^{\\Theta}}{\\mathrm{d} T}=\\frac{\\Delta_{\\mathrm{r}} S^{\\Theta}}{v F}\n$$ , the reaction entropy is\r\n$$\r\n\\begin{aligned}\r\n\\Delta_{\\mathrm{r}} S^{\\ominus} & =1 \\times\\left(9.6485 \\times 10^4 \\mathrm{Cmol}^{-1}\\right) \\times\\left(-4.99 \\times 10^{-4} \\mathrm{~V} \\mathrm{~K}^{-1}\\right) \\\\\r\n& =-48.1 \\mathrm{~J} \\mathrm{~K}^{-1} \\mathrm{~mol}^{-1}\r\n\\end{aligned}\r\n$$\r\nThe negative value stems in part from the elimination of gas in the cell reaction. It then follows that\r\n$$\r\n\\begin{aligned}\r\n\\Delta_{\\mathrm{r}} H^{\\ominus} & =\\Delta_{\\mathrm{r}} G^{\\ominus}+T \\Delta_{\\mathrm{r}} S^{\\ominus}=-6.880 \\mathrm{~kJ} \\mathrm{~mol}^{-1}+(298 \\mathrm{~K}) \\times\\left(-0.0482 \\mathrm{~kJ} \\mathrm{~K}^{-1} \\mathrm{~mol}^{-1}\\right) \\\\\r\n& =-21.2 \\mathrm{~kJ} \\mathrm{~mol}^{-1}\r\n\\end{aligned}\r\n$$\n"
},
{
"problem_text": "In an industrial process, nitrogen is heated to $500 \\mathrm{~K}$ in a vessel of constant volume. If it enters the vessel at $100 \\mathrm{~atm}$ and $300 \\mathrm{~K}$, what pressure would it exert at the working temperature if it behaved as a perfect gas?",
"answer_latex": " 167",
"answer_number": "167",
"unit": " $\\mathrm{atm}$",
"source": "atkins",
"problemid": " 1.2",
"comment": " ",
"solution": "Cancellation of the volumes (because $V_1=V_2$ ) and amounts (because $\\left.n_1=n_2\\right)$ on each side of the combined gas law results in\r\n$$\r\n\\frac{p_1}{T_1}=\\frac{p_2}{T_2}\r\n$$\r\nwhich can be rearranged into\r\n$$\r\np_2=\\frac{T_2}{T_1} \\times p_1\r\n$$\r\nSubstitution of the data then gives\r\n$$\r\np_2=\\frac{500 \\mathrm{~K}}{300 \\mathrm{~K}} \\times(100 \\mathrm{~atm})=167 \\mathrm{~atm}\r\n$$\r\n"
}
] |