Datasets:

Modalities:
Text
Libraries:
Datasets
License:
File size: 2,320 Bytes
94a1be9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import re
from collections import defaultdict


def remove_double_linked_text(text):
    PATTERN = "\[\[[^\[\]\|]+\|([^\]]+)\]\]"
    result = re.search(PATTERN,text)
    while result is not None:
        s,e = result.span()
        text = text[:s]+result.group(1)+text[e:]
        result = re.search(PATTERN, text)
    return text


def remove_linked_text(text):
    PATTERN = "\[\[([^\[\]]+)\]\]"
    result = re.search(PATTERN,text)
    while result is not None:
        s,e = result.span()
        text = text[:s]+result.group(1)+text[e:]
        result = re.search(PATTERN, text)
    return text


def remove_attribute_in_table(text):
    PATTERN = "{{{[^}]+ ([^\}]+)}}}"
    result = re.search(PATTERN,text)
    while result is not None:
        s,e = result.span()
        text = text[:s]+result.group(1)+text[e:]
        result = re.search(PATTERN, text)

    text = re.sub("<bgcolor=#[^>]+>", "", text)
    text = re.sub("<-[0-9]>", "", text)
    text = re.sub("\|\|<table[^\n]+\n", "", text)
    text = re.sub("<tablewidth\=[^>]+>", "", text)
    text = re.sub("<width\=[^>]+>", "", text)
    text = re.sub("(?<=코멘트\-)\|\|(?=\n)", "", text)

    return text


def replace_link(text):
    text = re.sub("\[youtube\([^\]]+\)\]", "[YOUTUBE LINK]", text)
    return text


def process_text(text: str):
    text = text.strip()
    text = re.sub("\[\[파일:[^\]]+\]\]", "", text)
    text = remove_double_linked_text(text)
    text = remove_linked_text(text)
    text = re.sub("'''", "", text)
    text = replace_link(text)
    text = remove_attribute_in_table(text)
    return text


def get_structured_data(text: str, pattern="\n\=\= ([^\=\n]+) \=\=\n", default_value=None) -> dict:
    outputs = defaultdict(list)
    matched = re.search(pattern, text)
    is_first = True
    while matched is not None:
        b,s = matched.span()
        if is_first:
            outputs['item'].append("meta")
            outputs["content"].append(text[:b])
            is_first = False
        outputs["item"].append(matched.group(1))
        text = text[s:]
        matched = re.search(pattern, text)
        e = matched.start() if matched is not None else None
        outputs["content"].append(text[:e].strip())
    if not outputs and default_value is not None:
        return default_value
    return dict(outputs)