File size: 2,897 Bytes
484db88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import pandas as pd
from huggingface_hub import hf_hub_url
import datasets
import os
_VERSION = datasets.Version("0.0.1")
_DESCRIPTION = "TODO"
_HOMEPAGE = "TODO"
_LICENSE = "TODO"
_CITATION = "TODO"
_FEATURES = datasets.Features(
{
"image": datasets.Image(),
"conditioning_image": datasets.Image(),
"text": datasets.Value("string"),
},
)
METADATA_URL = hf_hub_url(
"williamberman/fill50k",
filename="train.jsonl",
repo_type="dataset",
)
IMAGES_URL = hf_hub_url(
"williamberman/fill50k",
filename="images.zip",
repo_type="dataset",
)
CONDITIONING_IMAGES_URL = hf_hub_url(
"williamberman/fill50k",
filename="conditioning_images.zip",
repo_type="dataset",
)
_DEFAULT_CONFIG = datasets.BuilderConfig(name="default", version=_VERSION)
class Fill50k(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [_DEFAULT_CONFIG]
DEFAULT_CONFIG_NAME = "default"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=_FEATURES,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
metadata_path = dl_manager.download(METADATA_URL)
images_dir = dl_manager.download_and_extract(IMAGES_URL)
conditioning_images_dir = dl_manager.download_and_extract(
CONDITIONING_IMAGES_URL
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"metadata_path": metadata_path,
"images_dir": images_dir,
"conditioning_images_dir": conditioning_images_dir,
},
),
]
def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir):
metadata = pd.read_json(metadata_path, lines=True)
for _, row in metadata.iterrows():
text = row["text"]
image_path = row["image"]
image_path = os.path.join(images_dir, image_path)
image = open(image_path, "rb").read()
conditioning_image_path = row["conditioning_image"]
conditioning_image_path = os.path.join(
conditioning_images_dir, row["conditioning_image"]
)
conditioning_image = open(conditioning_image_path, "rb").read()
yield row["image"], {
"text": text,
"image": {
"path": image_path,
"bytes": image,
},
"conditioning_image": {
"path": conditioning_image_path,
"bytes": conditioning_image,
},
}
|