File size: 4,639 Bytes
b012d38
 
 
 
0382386
b012d38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0382386
b012d38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import zipfile\n",
    "import requests\n",
    "import jsonlines\n",
    "from tqdm import tqdm\n",
    "from pathlib import Path\n",
    "from pycocotools.coco import COCO\n",
    "from pycocotools import mask as maskUtils"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Download Annotations"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "url = 'http://images.cocodataset.org/annotations/'\n",
    "file = 'annotations_trainval2017.zip'\n",
    "if not Path(f'./{file}').exists():\n",
    "    response = requests.get(url + file)\n",
    "    with open(file, 'wb') as f:\n",
    "        f.write(response.content)\n",
    "\n",
    "    with zipfile.ZipFile(file, 'r') as zipf:\n",
    "        zipf.extractall(Path())\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Read annotations"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "coco91_to_coco80 = [\n",
    "    None, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None,\n",
    "    11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,\n",
    "    23, None, 24, 25, None, None, 26, 27, 28, 29, 30,\n",
    "    31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41,\n",
    "    42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,\n",
    "    55, 56, 57, 58, 59, None, 60, None, None, 61, None,\n",
    "    62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, None,\n",
    "    73, 74, 75, 76, 77, 78, 79\n",
    "]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Instance Segmentation Task"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "train_data = COCO('annotations/instances_train2017.json')\n",
    "val_data = COCO('annotations/instances_val2017.json')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "for split, data in zip(['train', 'validation'], [train_data, val_data]):\n",
    "    with jsonlines.open(f'data/instance_{split}.jsonl', mode='w') as writer:\n",
    "        for image_id, image_info in tqdm(data.imgs.items()):\n",
    "            bboxes, categories, instance_rles = [], [], []\n",
    "            anns = data.imgToAnns[image_id]\n",
    "            height, width = image_info['height'], image_info['width']\n",
    "            for ann in anns:\n",
    "                bboxes.append(ann['bbox'])\n",
    "                categories.append(coco91_to_coco80[ann['category_id']])\n",
    "                segm = ann['segmentation']\n",
    "                if isinstance(segm, list):\n",
    "                    rles = maskUtils.frPyObjects(segm, height, width)\n",
    "                    rle = maskUtils.merge(rles)\n",
    "                    rle['counts'] = rle['counts'].decode()\n",
    "                elif isinstance(segm['counts'], list):\n",
    "                    rle = maskUtils.frPyObjects(segm, height, width)\n",
    "                    rle['counts'] = rle['counts'].decode()\n",
    "                else:\n",
    "                    rle = segm\n",
    "                instance_rles.append(rle)\n",
    "            writer.write({\n",
    "                'image': image_info['file_name'],\n",
    "                'bboxes': bboxes,\n",
    "                'categories': categories,\n",
    "                'inst.rles': instance_rles\n",
    "            })"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "for split in ['train', 'validation']:\n",
    "    file_path = f'data/instance_{split}.jsonl'\n",
    "    with zipfile.ZipFile(f'data/instance_{split}.zip', 'w', zipfile.ZIP_DEFLATED) as zipf:\n",
    "        zipf.write(file_path, os.path.basename(file_path))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}