|
from pathlib import Path |
|
import os |
|
from utils import load_json, write_json, dir_of_this_file, load_csv |
|
import torch |
|
|
|
from tqdm import tqdm |
|
|
|
|
|
sn_2_imgdir = { |
|
e[0]: Path("/your_path/colmap_results/data/") / e[1] |
|
for e in load_csv(dir_of_this_file(__file__) / "seed_db.csv") |
|
} |
|
|
|
|
|
SAVE_ROOT = dir_of_this_file(__file__) / "gt_cams" |
|
|
|
|
|
def write_cams(sn, all_cams): |
|
output_fn = SAVE_ROOT / f"{sn}.json" |
|
write_json(output_fn, all_cams) |
|
print(sn, end=',') |
|
print(output_fn) |
|
|
|
|
|
def list_scene_fnames(sn): |
|
return list(sorted(os.listdir(sn_2_imgdir[sn]))) |
|
|
|
|
|
def break_scenes(raw): |
|
raw = raw.strip().split('\n') |
|
return [e.strip() for e in raw] |
|
|
|
|
|
def strip_sn_prefix(sn_name): |
|
parts = sn_name.split("_")[1:] |
|
return "_".join(parts) |
|
|
|
|
|
def invert_trans(trans_T): |
|
assert trans_T.shape == (4, 4) |
|
R = trans_T[0:3, 0:3] |
|
t = trans_T[0:3, 3:4] |
|
new_T = torch.eye(4, dtype=trans_T.dtype, device=trans_T.device) |
|
new_T[0:3, 0:3] = R.T |
|
new_T[0:3, 3:4] = -R.T @ t |
|
return new_T |
|
|
|
|
|
def hike(): |
|
''' # these are problematic scenes |
|
hike_garden2: cams without their images! |
|
''' |
|
|
|
scenes = ''' |
|
hike_forest1 |
|
hike_forest2 |
|
hike_forest3 |
|
hike_garden3 |
|
hike_indoor |
|
hike_playground |
|
hike_university1 |
|
hike_university2 |
|
hike_university3 |
|
hike_university4 |
|
''' |
|
scenes = break_scenes(scenes) |
|
root = Path("/your_path/colmap_results/data/statichike") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for sn in scenes: |
|
img_fnames = list_scene_fnames(sn) |
|
|
|
raw = load_json( |
|
root / strip_sn_prefix(sn) / "transforms.json" |
|
) |
|
frames = list(sorted(raw['frames'], key=lambda x: x['file_path'])) |
|
|
|
cam_dir = root / strip_sn_prefix(sn) / "sparse" |
|
assert not (cam_dir / "1").is_dir() |
|
|
|
fr_fnames = [Path(fr['file_path']).name for fr in frames] |
|
|
|
c2ws_b = torch.tensor( |
|
[fr['transform_matrix'] for fr in frames], |
|
dtype=torch.float64, device="cuda" |
|
) |
|
|
|
c2ws_b[:, :, 1] *= -1 |
|
c2ws_b[:, :, 2] *= -1 |
|
|
|
try: |
|
from metrics import load_colmap_db_cams, pose_stats_suite |
|
|
|
|
|
names, _, c2ws_a = load_colmap_db_cams(cam_dir / "0", ".bin", return_all=True) |
|
assert fr_fnames == names |
|
res = pose_stats_suite(c2ws_a, c2ws_b) |
|
assert res['ate'] < 1e-5 |
|
assert res['auc_p'][0] > 99.99 |
|
del names, c2ws_a, res |
|
''' |
|
the c2w in frames are globally shifted for some reason. |
|
check that after alignment, error is small. |
|
''' |
|
except FileNotFoundError as e: |
|
print(e) |
|
|
|
|
|
assert set(fr_fnames).issubset(set(img_fnames)) |
|
|
|
|
|
|
|
c2ws_b = c2ws_b.cpu().float().tolist() |
|
all_cams = [] |
|
for i in range(len(frames)): |
|
all_cams.append({ |
|
'fname': fr_fnames[i], |
|
'c2w': c2ws_b[i] |
|
}) |
|
|
|
write_cams(sn, all_cams) |
|
|
|
|
|
def process_meganerf_cam(cam): |
|
c2w = cam['c2w'] |
|
x, y, z, t = torch.unbind(c2w, dim=1) |
|
c2w = torch.stack([x, -y, -z, t], dim=-1) |
|
full_c2w = torch.eye(4) |
|
full_c2w[0:3] = c2w |
|
return full_c2w |
|
|
|
|
|
def mill19(): |
|
scenes = """ |
|
mill19_building |
|
mill19_rubble |
|
""" |
|
scenes = break_scenes(scenes) |
|
|
|
for sn in scenes: |
|
img_fnames = list_scene_fnames(sn) |
|
cam_dir = Path(f"/your_path/colmap_results/data/mill19/{strip_sn_prefix(sn)}-pixsfm/train/metadata") |
|
all_cams = [] |
|
for im in tqdm(img_fnames): |
|
cam_file = cam_dir / Path(im).with_suffix(".pt") |
|
assert cam_file.is_file() |
|
cam = torch.load(cam_file, weights_only=True) |
|
c2w = process_meganerf_cam(cam) |
|
all_cams.append({ |
|
'fname': im, |
|
'c2w': c2w.tolist() |
|
}) |
|
|
|
write_cams(sn, all_cams) |
|
|
|
|
|
def urban_scene(): |
|
from string import Template |
|
|
|
scenes = ''' |
|
urbn_Campus |
|
urbn_Residence |
|
urbn_Sci-Art |
|
''' |
|
scenes = break_scenes(scenes) |
|
for sn in scenes: |
|
_sn = strip_sn_prefix(sn).lower() |
|
lns = load_csv( |
|
f"/your_path/colmap_results/data/urbanscene3d_meganerf/{_sn}-pixsfm/mappings.txt" |
|
) |
|
cam_dir_template = Template( |
|
"/your_path/colmap_results/data/urbanscene3d_meganerf/${sn}-pixsfm/${split}/metadata" |
|
) |
|
|
|
im_2_camfn = {e[0]: e[1] for e in lns} |
|
all_cams = [] |
|
keys = list(sorted(im_2_camfn.keys())) |
|
for k in tqdm(keys): |
|
|
|
camfn = Path(cam_dir_template.substitute(sn=_sn, split="train")) / im_2_camfn[k] |
|
if not camfn.is_file(): |
|
camfn = Path(cam_dir_template.substitute(sn=_sn, split="val")) / im_2_camfn[k] |
|
assert camfn.is_file() |
|
|
|
cam = torch.load(camfn, weights_only=True) |
|
c2w = process_meganerf_cam(cam) |
|
all_cams.append({ |
|
'fname': k, |
|
'c2w': c2w.tolist() |
|
}) |
|
|
|
write_cams(sn, all_cams) |
|
|
|
|
|
def nerf_osr(): |
|
scenes = """ |
|
nosr_europa |
|
nosr_lk2 |
|
nosr_lwp |
|
nosr_rathaus |
|
nosr_schloss |
|
nosr_st |
|
nosr_stjacob |
|
nosr_stjohann |
|
""" |
|
scenes = break_scenes(scenes) |
|
|
|
for sn in scenes: |
|
img_fnames = list_scene_fnames(sn) |
|
raw = load_json( |
|
f"/your_path/colmap_results/data/nerfosr_original/{strip_sn_prefix(sn)}/final/kai_cameras.json" |
|
) |
|
all_cams = [] |
|
for im in img_fnames: |
|
cam = raw[im] |
|
w2c = torch.tensor(cam['W2C'], dtype=torch.float64).reshape(4, 4) |
|
c2w = invert_trans(w2c) |
|
all_cams.append({ |
|
'fname': im, |
|
'c2w': c2w.tolist() |
|
}) |
|
|
|
write_cams(sn, all_cams) |
|
|
|
|
|
def drone_deploy(): |
|
|
|
scenes = """ |
|
dploy_house1 |
|
dploy_house2 |
|
dploy_house3 |
|
dploy_house4 |
|
dploy_pipes1 |
|
dploy_ruins1 |
|
dploy_ruins2 |
|
dploy_ruins3 |
|
dploy_tower1 |
|
dploy_tower2 |
|
""" |
|
scenes = break_scenes(scenes) |
|
for sn in scenes: |
|
img_fnames = list_scene_fnames(sn) |
|
raw = load_json( |
|
f"/your_path/colmap_results/data/dronedeploy/{strip_sn_prefix(sn)}/cameras.json" |
|
) |
|
|
|
|
|
frames = raw['frames'] |
|
frames = list(sorted(frames, key=lambda x: x['file_path'])) |
|
|
|
|
|
_fnames = [ |
|
Path(e['file_path']).name |
|
for e in frames |
|
] |
|
|
|
has_missing_img = False |
|
for e in _fnames: |
|
if e not in img_fnames: |
|
has_missing_img = True |
|
|
|
|
|
if has_missing_img: |
|
|
|
continue |
|
|
|
|
|
|
|
|
|
all_cams = [] |
|
for fr in frames: |
|
c2w = torch.tensor(fr['transform_matrix']) |
|
x, y, z, t = torch.unbind(c2w, dim=1) |
|
c2w = torch.stack([x, -y, -z, t], dim=-1) |
|
all_cams.append({ |
|
'fname': Path(fr['file_path']).name, |
|
'c2w': c2w.tolist() |
|
}) |
|
|
|
write_cams(sn, all_cams) |
|
|
|
|
|
def mipnerf360(): |
|
scenes = """ |
|
m360_flowers |
|
m360_room |
|
m360_counter |
|
m360_stump |
|
m360_kitchen |
|
m360_garden |
|
m360_bicycle |
|
m360_bonsai |
|
m360_treehill |
|
""" |
|
scenes = break_scenes(scenes) |
|
for sn in scenes: |
|
path = f"/your_path/nerfbln_dset/mipnerf360/{strip_sn_prefix(sn)}/sparse/0" |
|
print(sn, end=',') |
|
print(path) |
|
|
|
|
|
def eyeful(): |
|
scenes = """ |
|
eft_apartment |
|
eft_kitchen |
|
""" |
|
|
|
|
|
|
|
|
|
scenes = break_scenes(scenes) |
|
for sn in scenes: |
|
frames = load_json( |
|
Path(f"/your_path/colmap_results/data/eyefultower/{strip_sn_prefix(sn)}/cameras.json") |
|
)['KRT'] |
|
frames = sorted(frames, key=lambda x: x['cameraId']) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all_cams = [] |
|
for fr in tqdm(frames): |
|
w2c = torch.tensor(fr['T']).T |
|
c2w = invert_trans(w2c) |
|
all_cams.append({ |
|
'fname': f"{fr['cameraId']}.jpg", |
|
'c2w': c2w.tolist() |
|
}) |
|
|
|
write_cams(sn, all_cams) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def tnt(): |
|
scenes = ''' |
|
tnt_advn_Auditorium |
|
tnt_advn_Ballroom |
|
tnt_advn_Courtroom |
|
tnt_advn_Museum |
|
tnt_advn_Palace |
|
tnt_advn_Temple |
|
tnt_intrmdt_Family |
|
tnt_intrmdt_Francis |
|
tnt_intrmdt_Horse |
|
tnt_intrmdt_Lighthouse |
|
tnt_intrmdt_M60 |
|
tnt_intrmdt_Panther |
|
tnt_intrmdt_Playground |
|
tnt_intrmdt_Train |
|
tnt_trng_Barn |
|
tnt_trng_Caterpillar |
|
tnt_trng_Church |
|
tnt_trng_Courthouse |
|
tnt_trng_Ignatius |
|
tnt_trng_Meetingroom |
|
tnt_trng_Truck |
|
''' |
|
scenes = break_scenes(scenes) |
|
for sn in scenes: |
|
_sn = sn.split('_')[-1].lower() |
|
gt_cam_path = f"/your_path/nerfbln_dset/tnt/{_sn}/sparse" |
|
print(sn, end=',') |
|
print(gt_cam_path) |
|
|
|
|
|
def eth3d_dslr(): |
|
scenes = ''' |
|
eth3d_dslr_botanical_garden |
|
eth3d_dslr_boulders |
|
eth3d_dslr_bridge |
|
eth3d_dslr_courtyard |
|
eth3d_dslr_delivery_area |
|
eth3d_dslr_door |
|
eth3d_dslr_electro |
|
eth3d_dslr_exhibition_hall |
|
eth3d_dslr_facade |
|
eth3d_dslr_kicker |
|
eth3d_dslr_lecture_room |
|
eth3d_dslr_living_room |
|
eth3d_dslr_lounge |
|
eth3d_dslr_meadow |
|
eth3d_dslr_observatory |
|
eth3d_dslr_office |
|
eth3d_dslr_old_computer |
|
eth3d_dslr_pipes |
|
eth3d_dslr_playground |
|
eth3d_dslr_relief |
|
eth3d_dslr_relief_2 |
|
eth3d_dslr_statue |
|
eth3d_dslr_terrace |
|
eth3d_dslr_terrace_2 |
|
eth3d_dslr_terrains |
|
''' |
|
scenes = break_scenes(scenes) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for sn in scenes: |
|
_sn = sn[len('eth3d_dslr_'):] |
|
gt_cam_path = f"/your_path/colmap_results/data/eth3d_dslr/{_sn}/dslr_calibration_undistorted" |
|
assert Path(gt_cam_path).is_dir() |
|
print(sn, end=',') |
|
print(gt_cam_path) |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pass |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|