Datasets:
File size: 6,521 Bytes
e1f327f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The WebNLG 2023 Challenge."""
import os
import xml.etree.ElementTree as ET
from collections import defaultdict
import datasets
_HOMEPAGE = "https://synalp.gitlabpages.inria.fr/webnlg-challenge/challenge_2023/"
_DESCRIPTION = """\
The WebNLG challenge consists in mapping data to text. The training data consists
of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation
of these triples. For instance, given the 3 DBpedia triples shown in (a), the aim is to generate a text such as (b).
a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)
b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot
As the example illustrates, the task involves specific NLG subtasks such as sentence segmentation
(how to chunk the input data into sentences), lexicalisation (of the DBpedia properties),
aggregation (how to avoid repetitions) and surface realisation
(how to build a syntactically correct and natural sounding text).
"""
_LICENSE = ""
_CITATION = """\
@inproceedings{web_nlg,
author = {Claire Gardent and
Anastasia Shimorina and
Shashi Narayan and
Laura Perez{-}Beltrachini},
editor = {Regina Barzilay and
Min{-}Yen Kan},
title = {Creating Training Corpora for {NLG} Micro-Planners},
booktitle = {Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics,
{ACL} 2017, Vancouver, Canada, July 30 - August 4,
Volume 1: Long Papers},
pages = {179--188},
publisher = {Association for Computational Linguistics},
year = {2017},
url = {https://doi.org/10.18653/v1/P17-1017},
doi = {10.18653/v1/P17-1017}
}
"""
# From: https://github.com/WebNLG/2023-Challenge
_URL = "data.zip"
_LANGUAGES = ["br", "cy", "ga", "mt", "ru"]
def et_to_dict(tree):
dct = {tree.tag: {} if tree.attrib else None}
children = list(tree)
if children:
dd = defaultdict(list)
for dc in map(et_to_dict, children):
for k, v in dc.items():
dd[k].append(v)
dct = {tree.tag: dd}
if tree.attrib:
dct[tree.tag].update((k, v) for k, v in tree.attrib.items())
if tree.text:
text = tree.text.strip()
if children or tree.attrib:
if text:
dct[tree.tag]["text"] = text
else:
dct[tree.tag] = text
return dct
def parse_entry(entry):
res = {}
otriple_set_list = entry["originaltripleset"]
res["original_triple_sets"] = [{"otriple_set": otriple_set["otriple"]} for otriple_set in otriple_set_list]
mtriple_set_list = entry["modifiedtripleset"]
res["modified_triple_sets"] = [{"mtriple_set": mtriple_set["mtriple"]} for mtriple_set in mtriple_set_list]
res["category"] = entry["category"]
res["eid"] = entry["eid"]
res["size"] = int(entry["size"])
res["lex"] = {
"comment": [ex.get("comment", "") for ex in entry.get("lex", [])],
"lid": [ex.get("lid", "") for ex in entry.get("lex", [])],
"text": [ex.get("text", "") for ex in entry.get("lex", [])],
"lang": [ex.get("lang", "") for ex in entry.get("lex", [])],
}
res["shape"] = entry.get("shape", "")
res["shape_type"] = entry.get("shape_type", "")
return res
def xml_file_to_examples(filename):
tree = ET.parse(filename).getroot()
examples = et_to_dict(tree)["benchmark"]["entries"][0]["entry"]
return [parse_entry(entry) for entry in examples]
class Challenge2023(datasets.GeneratorBasedBuilder):
"""The WebNLG 2023 Challenge dataset."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [datasets.BuilderConfig(name=language) for language in _LANGUAGES]
def _info(self):
features = datasets.Features(
{
"category": datasets.Value("string"),
"size": datasets.Value("int32"),
"eid": datasets.Value("string"),
"original_triple_sets": datasets.Sequence(
{"otriple_set": datasets.Sequence(datasets.Value("string"))}
),
"modified_triple_sets": datasets.Sequence(
{"mtriple_set": datasets.Sequence(datasets.Value("string"))}
),
"shape": datasets.Value("string"),
"shape_type": datasets.Value("string"),
"lex": datasets.Sequence(
{
"comment": datasets.Value("string"),
"lid": datasets.Value("string"),
"text": datasets.Value("string"),
"lang": datasets.Value("string"),
}
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URL)
splits = {datasets.Split.TRAIN: "train", datasets.Split.VALIDATION: "dev"}
return [
datasets.SplitGenerator(
name=split,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"xml_file": os.path.join(data_dir, "data", f"{self.config.name}_{split_filename}.xml"),
},
)
for split, split_filename in splits.items()
]
def _generate_examples(self, xml_file):
"""Yields examples."""
id_ = 0
for exple_dict in xml_file_to_examples(xml_file):
yield id_, exple_dict
id_ += 1
|