Datasets:
metadata
license: cc-by-4.0
Touché23-ValueEval
Usage:
from datasets import load_dataset
import ast
def convert_labels(example):
example["Labels"] = [i for i in ast.literal_eval(example["Labels"])]
return example
valueeval23 = load_dataset("webis/Touche23-ValueEval")
training_dataset = valueeval23["training"].map(convert_labels)
See available dataset parts:
valueeval23
The Labels
for each example is an array of 1s (argument resorts to value) and 0s (argument does not resort to value). The order is the same as in the original files:
labels = ["Self-direction: thought", "Self-direction: action", "Stimulation", "Hedonism", "Achievement", "Power: dominance", "Power: resources", "Face", "Security: personal", "Security: societal", "Tradition", "Conformity: rules", "Conformity: interpersonal", "Humility", "Benevolence: caring", "Benevolence: dependability", "Universalism: concern", "Universalism: nature", "Universalism: tolerance", "Universalism: objectivity"]