Datasets:
File size: 5,868 Bytes
763edf7 70f29c2 763edf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# -*- coding: utf-8 -*-
"""LSOIE: A Large-Scale Dataset for Supervised Open Information Extraction."""
import os
import datasets
from datasets.info import SupervisedKeysData
from zipfile import ZipFile
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{lsoie-2021,
title={{LSOIE}: A Large-Scale Dataset for Supervised Open Information Extraction},
author={{Solawetz}, Jacob and {Larson}, Stefan},
journal={arXiv preprint arXiv:2101.11177},
year={2019},
url="https://arxiv.org/pdf/2101.11177.pdf"
}
"""
_DESCRIPTION = """
The Large Scale Open Information Extraction Dataset (LSOIE), is a dataset 20
times larger than the next largest human-annotated Open Information Extraction
(OIE) dataset. LSOIE is a built upon the QA-SRL 2.0 dataset.
"""
_URL = "https://github.com/Jacobsolawetz/large-scale-oie/"
_URLS = {
"zip": _URL+"raw/master/dataset_creation/lsoie_data/lsoie_data.zip"
}
_ARCHIVE_FILES = [
"lsoie_science_train.conll",
"lsoie_science_dev.conll",
"lsoie_science_test.conll",
"lsoie_wiki_train.conll",
"lsoie_wiki_dev.conll",
"lsoie_wiki_test.conll",
]
class LsoieConfig(datasets.BuilderConfig):
"""BuilderConfig for LSOIE."""
def __init__(self,subset="wiki", **kwargs):
"""BuilderConfig for LSOIE.
Args:
subset: str - either "wiki" or "science"
**kwargs: keyword arguments forwarded to super.
"""
super(LsoieConfig, self).__init__(**kwargs)
self.subset=subset
class Lsoie(datasets.GeneratorBasedBuilder):
"""LSOIE: A Large-Scale Dataset for Supervised Open Information Extraction"""
BUILDER_CONFIGS = [
LsoieConfig(
name="wiki",
description="LSOIE dataset from wikipedia and wikinews",
subset="wiki",
),
LsoieConfig(
name="sci",
description="LSOIE dataset build over scientific domain",
subset="science",
),
]
DEFAULT_CONFIG_NAME = "wiki"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"word_ids": datasets.Sequence(datasets.Value("int16")),
"words": datasets.Sequence(datasets.Value("string")),
"pred": datasets.Value("string"),
"pred_ids": datasets.Sequence(datasets.Value("int16")),
"head_pred_id": datasets.Value("int16"),
"sent_id": datasets.Value("int16"),
"run_id": datasets.Value("int16"),
"label": datasets.Sequence(datasets.Value("string")),
}
),
supervised_keys=SupervisedKeysData(input="word_ids",output="label"),
homepage=_URL,
citation=_CITATION,
#there is no default task for open information extraction yet
#task_templates=[
# OpenInformationExtraction(
# question_column="question", context_column="context", answers_column="answers"
# )
#],
)
def _split_generators(self, dl_manager):
downloaded_archive = dl_manager.download(_URLS)['zip']
#name_pre=os.path.join("lsoie_data","lsoie_")+self.config.subset+"_"
name_pre="lsoie_"+self.config.subset+"_"
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN,
gen_kwargs={
"archive_path": downloaded_archive,
"file_name": name_pre+"train.conll",
}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION,
gen_kwargs={
"archive_path": downloaded_archive,
"file_name": name_pre+"dev.conll",
}),
datasets.SplitGenerator(name=datasets.Split.TEST,
gen_kwargs={
"archive_path": downloaded_archive,
"file_name": name_pre+"test.conll",
}),
]
def _generate_examples(self,archive_path,file_name):
"""This functions returns the samples in a raw format"""
logger.info("generating examples from archive:{}".format(archive_path))
columns={'word_ids':int,
'words':str,
'pred':str,
'pred_ids':lambda x: [ num for num in x.strip('[]').split(',')],
'head_pred_id': int,
'sent_id':int,
'run_id': int,
'label':str}
list_columns=["word_ids","words","label"]
sep="\t"
key=0
sentence=dict()
for column in list_columns:
sentence[column]=[]
with ZipFile(archive_path) as zipfile:
with zipfile.open('lsoie_data/'+file_name,mode='r') as file:
for line in file:
line=line.decode("utf-8").strip('\n').split(sep=sep)
if line[0]=='':
yield key, sentence
key+=1
for column in list_columns:
sentence[column]=[]
continue
for column, val in zip(columns.keys(),line):
val=columns[column](val)
if column in list_columns:
sentence[column].append(val)
else:
sentence[column]=val |