Datasets:
Modalities:
Image
Languages:
English
ArXiv:
Tags:
Visual Nagivation
Proxy Map
Waypoint
Reinforcement Learning
Contrastive Learning
Intuitive Robot Motion Intent Visualization
DOI:
License:
File size: 7,127 Bytes
39efb18 0335fbe 39efb18 779f244 e076b37 f5473f7 779f244 cbb05ec 779f244 8a6667a 779f244 f5473f7 779f244 5fb84e1 779f244 e076b37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
license: mit
language:
- en
tags:
- Visual Nagivation
- Proxy Map
- Waypoint
- Reinforcement Learning
- Contrastive Learning
- Intuitive Robot Motion Intent Visualization
---
# LAVN Dataset
Accepted to [HRI2025 Short Contributions](https://humanrobotinteraction.org/2025/short-contributions/)
Preprint: [arxiv.org/pdf/2308.16682](arxiv.org/pdf/2308.16682)
### Dataset Organization
After downloading and unzipping the zip files, please reorganize the files in the following tructure:
```
LAVN
|--src
|--makeData_virtual.py
|--makeData_real.py
...
|--Virtual
|--Gibson
|--traj_<SCENE_ID>
|--worker_graph.json
|--rgb_<FRAME_ID>.jpg
|--depth_<FRAME_ID>.jpg
|--traj_Ackermanville
|--worker_graph.json
|--rgb_00001.jpg
|--rgb_00002.jpg
...
|--depth_00001.jpg
|--depth_00002.jpg
...
...
|--Matterport
|--traj_<SCENE_ID>
|--worker_graph.json
|--rgb_<FRAME_ID>.jpg
|--depth_<FRAME_ID>.jpg
|--traj_00000-kfPV7w3FaU5
|--worker_graph.json
|--rgb_00001.jpg
|--rgb_00002.jpg
...
|--depth_00001.jpg
|--depth_00002.jpg
...
...
|--Real
|--Campus
|--worker_graph.json
|--traj_480p_<SCENE_ID>
|--rgb_<FRAME_ID>.jpg
|--traj_480p_scene00
|--rgb_00001.jpg
```
where the main landmark annotation scripts ```makeData_virtual.py``` and ```makeData_real.py``` are in folder (1) ```src```. (2) ```Virtual``` and (3) ```Real``` store trajectories collected in the simulation and real world, respectively. Each trajectory's data is collected in the following format:
```
|--traj_<SCENE_ID>
|--worker_graph.json
|--rgb_<FRAME_ID>.jpg
|--depth_<FRAME_ID>.jpg
```
where ```<SCENE_ID>``` matches exactly the original one in [Gibson](https://github.com/StanfordVL/GibsonEnv/blob/master/gibson/data/README.md) and [Matterport](https://aihabitat.org/datasets/hm3d/) run by the photo-realistic simulator [Habitat](https://github.com/facebookresearch/habitat-sim). Images are saved in either ```.jpg``` or ```.png``` format. Note that ```rgb``` images are the main visual representation while ```depth``` is the auxiliary visual information captured only in the virtual environment. Real-world RGB images are downsampled to a ```640 × 480``` resolution noted by ```480p``` in a trajectory folder name.
```worker_graph.json``` stores the meta data in dictionary in Python saved in ```json``` file with the following format:
```
{"node<NODE_ID>":
{"img_path": "./human_click_dataset/traj_<SCENE_ID>/rgb_<FRAME_ID>.jpg",
"depth_path": "./human_click_dataset/traj_<SCENE_ID>/depth_<FRAME_ID>.png",
"location": [<LOC_X>, <LOC_Y>, <LOC_Z>],
"orientation": <ORIENT>,
"click_point": [<COOR_X>, <COOR_Y>],
"reason": ""},
...
"node0":
{"img_path": "./human_click_dataset/traj_00101-n8AnEznQQpv/rgb_00002.jpg",
"depth_path": "./human_click_dataset/traj_00101-n8AnEznQQpv/depth_00002.jpg",
"location": [0.7419548034667969, -2.079209327697754, -0.5635206699371338],
"orientation": 0.2617993967423121,
"click_point": [270, 214],
"reason": ""}
...
"edges":...
"goal_location": null,
"start_location": [<LOC_X>, <LOC_Y>, <LOC_Z>],
"landmarks": [[[<COOR_X>, <COOR_Y>], <FRAME_ID>], ...],
"actions": ["ACTION_NAME", "turn_right", "move_forward", "turn_right", ...]
"env_name": <SCENE_ID>
}
```
where ```[<LOC_X>, <LOC_Y>, <LOC_Z>]``` is the 3-axis location vector, ```<ORIENT>``` is the orientation only in simulation. ```[<COOR_X>, <COOR_Y>]``` are the image coordinates of landmarks. ```ACTION_NAME``` stores the action of the robot take from the current frame to the next frame.
### Dataset Usage
The visual navigation task can be formulated as various types of problems, including but not limited to:
**1. Supervised Learning** by mapping visual observations (```RGBD```) to waypoints (image coordinates). A developer can
design a vision network whose input (```X```) is ```RGBD``` and output (```Y```) is image coordinate, specified by ```img_path```, ```depth_path```
and click point ```[<COOR_X>, <COOR_Y>]``` in the worker ```graph.json``` file in the dataset. The loss function can
be designed to minimize the discrepancy between the predicted image coordinate (```Y_pred```) and the ground truth (```Y```), e.g.
```loss = ||Y_pred − Y||```. Then ```Y_pred``` can be simply translated to a robot’s moving action, such as ```Y_pred``` in the center or
top region of an image means moving forward while ```left/right``` regions represent turning left or right.
**2. Map Representation Learning** in the latent space of a neural network. One can train this latent space to represent two
observations’ proximity by contrastive learning. The objective is to learn a function ```h()``` that predicts the distance given two
observations (```X1```) and (```X2```): ```dist = h(X1, X2)```. Note that ```dist()``` can be a cosine or distance-based function, depending on
the design choice. The positive samples can be nodes (a node includes information at a timestep such as ```RGBD``` data and image
coordinates) nearby while further nodes can be treated as negative samples. A landmark is a sparse and distinct object or scene
in the dataset that facilitates a more structured and global connection between nodes, which further assists in navigation in
more complex or longer trajectories.
### Long-Term Maintenance Plan
We will conduct a long-term maintenance plan to ensure the accessability and quality for future research:
**Data Standards**: Data formats will be checked regularly with scripts to validate data consistency.
**Data Cleaning**: Data in incorrect formats, missing data or contains invalid values will be removed.
**Scheduled Updates**: We set up montly schedule for data updates.
**Storage Solutions**: HuggingFace, with DOI (doi:10.57967/hf/2386), is provided as a public repository for online storage. A second copy will be stored in a private cloud server while a third copy will be stored in a local drive.
**Data Backup**: Once one of the copies in the aforementioned storage approach is detected inaccessible, it will be restored by one of the other two copies immediately.
**Documentation**: Our documentation will be updated regularly reflecting feedback from users.
### Citation
```
@article{johnson2024landmark,
title={A Landmark-Aware Visual Navigation Dataset},
author={Johnson, Faith and Cao, Bryan Bo and Dana, Kristin and Jain, Shubham and Ashok, Ashwin},
journal={arXiv preprint arXiv:2402.14281},
year={2024}
}
```
```
@misc{visnavdataset_lavn,
author = {visnavdataset},
title = {LAVN Dataset},
year = 2025,
doi = {10.57967/hf/2386},
url = {https://huggingface.co/datasets/visnavdataset/lavn},
note = {Accessed: 2025-02-07}
}
```
Note: change the accessed date.
|