File size: 6,164 Bytes
76d9c4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
---
title: Stable Diffusion Playground
description: Launch an interactive web app for Stable Diffusion
icon: "circle-2"
version: EN
---
This example deploys a simple web app for Stable Diffusion. You will learn how you can set up an interactive workload for inference -- mounting models from Hugging Face and opening up a port for user inputs. For a more in-depth guide, refer to our [blog post](https://blog.vessl.ai/thin-plate-spline-motion-model-for-image-animation).
<CardGroup cols={2}>
<Card icon="sparkles" title="Try it on VESSL Hub" href="https://vessl.ai/hub/ssd-1b-inference">
Try out the Quickstart example with a single click on VESSL Hub.
</Card>
<Card icon="github" title="See the final code" href="https://github.com/vessl-ai/hub-model/tree/main/SSD-1B">
See the completed YAML file and final code for this example.
</Card>
</CardGroup>
## What you will do
<img
style={{ borderRadius: '0.5rem' }}
src="/images/get-started/ssd-title.png"
/>
- Host a GPU-accelerated web app built with [Streamlit](https://streamlit.io/)
- Mount model checkpoints from [Hugging Face](https://huggingface.co/)
- Open up a port to an interactive workload for inference
## Writing the YAML
Let's fill in the `stable-diffusion.yml` file.
<Steps titleSize="h3">
<Step title="Spin up an interactive workload">
We already learned how you can launch an interactive workload in our [previous](/get-started/gpu-notebook) guide. Let's copy & paste the YAML we wrote for `notebook.yml`.
```yaml
name: Stable Diffusion Playground
description: An interactive web app for Stable Diffusion
resources:
cluster: vessl-gcp-oregon
preset: gpu-l4-small
image: quay.io/vessl-ai/torch:2.1.0-cuda12.2-r3
interactive:
jupyter:
idle_timeout: 120m
max_runtime: 24h
```
</Step>
<Step title="Configure an interactive run">
Let's mount a [GitHub repo](https://github.com/vessl-ai/hub-model/tree/main/SSD-1B) and import a model checkpoint from Hugging Face. We already learned how you can mount a codebase from our [Quickstart](/get-started/quickstart) guide.
VESSL AI comes with a native integration with Hugging Face so you can import models and datasets simply by referencing the link to the Hugging Face repository. Under `import`, let's create a working directory `/model/` and import the [model](https://huggingface.co/VESSL/SSD-1B/tree/main).
```yaml
name: Stable Diffusion Playground
description: An interactive web app for Stable Diffusion
resources:
cluster: vessl-gcp-oregon
preset: gpu-l4-small
image: quay.io/vessl-ai/torch:2.1.0-cuda12.2-r3
import:
/code/:
git:
url: https://github.com/vessl-ai/hub-model
ref: main
/model/: hf://huggingface.co/VESSL/SSD-1B
interactive:
jupyter:
idle_timeout: 120m
max_runtime: 24h
```
</Step>
<Step title="Open up a port for inference">
The `ports` key expose the workload ports where VESSL AI listens for HTTP requests. This means you will be able to interact with the remote workload -- sending input query and receiving an generated image through port `80` in this case.
```yaml
name: Stable Diffusion Playground
description: An interactive web app for Stable Diffusion
resources:
cluster: vessl-gcp-oregon
preset: gpu-l4-small
image: quay.io/vessl-ai/torch:2.1.0-cuda12.2-r3
import:
/code/:
git:
url: https://github.com/vessl-ai/hub-model
ref: main
/model/: hf://huggingface.co/VESSL/SSD-1B
interactive:
jupyter:
idle_timeout: 120m
max_runtime: 24h
ports:
- name: streamlit
type: http
port: 80
```
</Step>
<Step title="Write the run commands">
Let's install additional Python dependencies with [`requirements.txt`](https://github.com/vessl-ai/hub-model/blob/main/SSD-1B/requirements.txt) and finally run our app [`ssd_1b_streamlit.py`](https://github.com/vessl-ai/hub-model/blob/main/SSD-1B/ssd_1b_streamlit.py).
Here, we see how our Streamlit app is using the port we created previously with the `--server.port=80` flag. Through the port, the app receives a user input and generates an image with the Hugging Face model we mounted on `/model/`.
```yaml
name: Stable Diffusion Playground
description: An interactive web app for Stable Diffusion
resources:
cluster: vessl-gcp-oregon
preset: gpu-l4-small
image: quay.io/vessl-ai/torch:2.1.0-cuda12.2-r3
import:
/code/:
git:
url: https://github.com/vessl-ai/hub-model
ref: main
/model/: hf://huggingface.co/VESSL/SSD-1B
run:
- command: |-
pip install -r requirements.txt
streamlit run ssd_1b_streamlit.py --server.port=80
workdir: /code/SSD-1B
interactive:
max_runtime: 24h
jupyter:
idle_timeout: 120m
ports:
- name: streamlit
type: http
port: 80
```
</Step>
</Steps>
## Running the app
Once again, running the workload will guide you to the workload Summary page.
```
vessl run create -f stable-diffusion.yml
```
Under ENDPOINTS, click the `streamlit` link to launch the app.
<img
style={{ borderRadius: '0.5rem' }}
src="/images/get-started/ssd-summary.jpeg"
/>
<img
style={{ borderRadius: '0.5rem' }}
src="/images/get-started/ssd-streamlit.jpeg"
/>
## Using our web interface
You can repeat the same process on the web. Head over to your [Organization](https://vessl.ai), select a project, and create a New run.
<iframe
src="https://scribehow.com/embed/Stable_Diffusion_Playground__D9ujQM9ZQtGz_Aj9oiyXSg?skipIntro=true&removeLogo=true"
width="100%" height="640" allowfullscreen frameborder="0"
style={{ borderRadius: '0.5rem' }} >
</iframe>
## What's next?
See how VESSL AI takes care of the infrastructural challenges of fine-tuning a large language model with a custom dataset.
<CardGroup cols={2}>
<Card title="Llama 2 Fine-tuing" href="get-started/llama2">
Launch an interactive web application for Stable Diffusion
</Card>
</CardGroup>
|