File size: 22,176 Bytes
b366864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e4157
b366864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e4157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b366864
 
 
a7e4157
b366864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
# /// script
# requires-python = ">=3.11"
# dependencies = [
#     "datasets",
#     "huggingface-hub[hf_transfer]",
#     "pillow",
#     "vllm",
#     "tqdm",
#     "toolz",
#     "torch",  # Added for CUDA check
# ]
#
# ///

"""
Convert document images to markdown using NuMarkdown-8B-Thinking with vLLM.

This script processes images through the NuMarkdown model to extract
text with advanced reasoning capabilities, ideal for complex document understanding.

Features:
- Reasoning-based document analysis with thinking tokens
- Superior table extraction and formatting
- Complex layout understanding
- Mathematical formula recognition
- Clean markdown output generation
- Optional thinking trace inclusion
"""

import argparse
import base64
import io
import json
import logging
import os
import re
import sys
from typing import Any, Dict, List, Union, Optional, Tuple
from datetime import datetime

import torch
from datasets import load_dataset
from huggingface_hub import DatasetCard, HfApi, login
from PIL import Image
from toolz import partition_all
from tqdm.auto import tqdm
from vllm import LLM, SamplingParams

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


def check_cuda_availability():
    """Check if CUDA is available and exit if not."""
    if not torch.cuda.is_available():
        logger.error("CUDA is not available. This script requires a GPU.")
        logger.error("Please run on a machine with a CUDA-capable GPU.")
        sys.exit(1)
    else:
        logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")


def validate_and_resize_image(
    image: Image.Image,
    min_pixels: int = 100 * 28 * 28,
    max_pixels: int = 5000 * 28 * 28,
) -> Image.Image:
    """Validate and resize image to meet pixel constraints if necessary."""
    width, height = image.size
    total_pixels = width * height
    
    if total_pixels < min_pixels or total_pixels > max_pixels:
        # Calculate scaling factor
        if total_pixels < min_pixels:
            scale = (min_pixels / total_pixels) ** 0.5
        else:
            scale = (max_pixels / total_pixels) ** 0.5
        
        new_width = int(width * scale)
        new_height = int(height * scale)
        
        logger.debug(f"Resizing image from {width}x{height} to {new_width}x{new_height}")
        image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
    
    return image


def extract_answer_from_thinking(text: str, include_thinking: bool = False) -> str:
    """
    Extract the final answer from NuMarkdown's thinking output.
    
    The model generates output in format:
    <think>reasoning process...</think>
    <answer>final markdown output</answer>
    """
    if include_thinking:
        # Return the full output including thinking traces
        return text.strip()
    
    # Extract content between <answer> tags
    answer_pattern = r'<answer>(.*?)</answer>'
    answer_match = re.search(answer_pattern, text, re.DOTALL)
    
    if answer_match:
        return answer_match.group(1).strip()
    
    # If no answer tags found, check if the entire text is markdown
    # (sometimes the model might not use tags)
    if not '<think>' in text and not '<answer>' in text:
        return text.strip()
    
    # Fallback: return everything after </think> if present
    think_end = text.find('</think>')
    if think_end != -1:
        remaining = text[think_end + 8:].strip()
        # Remove <answer> tags if present
        remaining = remaining.replace('<answer>', '').replace('</answer>', '').strip()
        return remaining
    
    # Last resort: return the full text
    logger.warning("Could not extract answer from thinking tokens, returning full text")
    return text.strip()


def make_numarkdown_message(
    image: Union[Image.Image, Dict[str, Any], str],
    prompt: str = "Convert this document to markdown. Focus on preserving structure, tables, formulas, and all textual content.",
) -> List[Dict]:
    """Create chat message for NuMarkdown processing."""
    # Convert to PIL Image if needed
    if isinstance(image, Image.Image):
        pil_img = image.convert("RGB")
    elif isinstance(image, dict) and "bytes" in image:
        pil_img = Image.open(io.BytesIO(image["bytes"])).convert("RGB")
    elif isinstance(image, str):
        pil_img = Image.open(image).convert("RGB")
    else:
        raise ValueError(f"Unsupported image type: {type(image)}")
    
    # Validate and resize if necessary
    pil_img = validate_and_resize_image(pil_img)
    
    # Convert to base64 data URI
    buf = io.BytesIO()
    pil_img.save(buf, format="PNG")
    data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"
    
    # Return message in vLLM chat format
    return [
        {
            "role": "user",
            "content": [
                {"type": "image_url", "image_url": {"url": data_uri}},
                {"type": "text", "text": prompt},
            ],
        }
    ]


def create_dataset_card(
    source_dataset: str,
    model: str,
    num_samples: int,
    processing_time: str,
    batch_size: int,
    max_model_len: int,
    max_tokens: int,
    gpu_memory_utilization: float,
    include_thinking: bool,
    image_column: str = "image",
    split: str = "train",
) -> str:
    """Create a dataset card documenting the OCR process."""
    model_name = model.split("/")[-1]
    
    return f"""---
tags:
- ocr
- document-processing
- numarkdown
- markdown
- reasoning
- thinking-tokens
- uv-script
- generated
---

# Document OCR using {model_name}

This dataset contains markdown-formatted OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using NuMarkdown-8B-Thinking.

## Processing Details

- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
- **Model**: [{model}](https://huggingface.co/{model})
- **Number of Samples**: {num_samples:,}
- **Processing Time**: {processing_time}
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")}

### Configuration

- **Image Column**: `{image_column}`
- **Output Column**: `markdown`
- **Dataset Split**: `{split}`
- **Batch Size**: {batch_size}
- **Max Model Length**: {max_model_len:,} tokens
- **Max Output Tokens**: {max_tokens:,}
- **GPU Memory Utilization**: {gpu_memory_utilization:.1%}
- **Thinking Traces**: {"Included" if include_thinking else "Excluded (only final answers)"}

## Model Information

NuMarkdown-8B-Thinking is a state-of-the-art reasoning-based document OCR model that excels at:
- 🧠 **Reasoning Process** - Analyzes document layout before generation
- πŸ“Š **Complex Tables** - Superior table extraction and formatting
- πŸ“ **Mathematical Formulas** - Accurate LaTeX/math notation preservation
- πŸ“ **Document Structure** - Maintains hierarchical document organization
- πŸ” **Layout Analysis** - Understands complex multi-column layouts
- ✨ **Clean Output** - Generates well-formatted markdown

### Thinking Tokens

This model uses a unique "thinking" process where it:
1. Analyzes the document structure internally (`<think>` phase)
2. Generates the final markdown output (`<answer>` phase)

{"The dataset includes both thinking traces and final answers." if include_thinking else "Only the final answers are included (thinking traces removed)."}

## Dataset Structure

The dataset contains all original columns plus:
- `markdown`: The extracted text in markdown format
- `inference_info`: JSON list tracking all OCR models applied to this dataset

## Usage

```python
from datasets import load_dataset
import json

# Load the dataset
dataset = load_dataset("{{output_dataset_id}}", split="{split}")

# Access the markdown text
for example in dataset:
    print(example["markdown"])
    break

# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
    print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}")
```

## Reproduction

This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) NuMarkdown OCR script:

```bash
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py \\
    {source_dataset} \\
    <output-dataset> \\
    --image-column {image_column} \\
    --batch-size {batch_size} \\
    --max-model-len {max_model_len} \\
    --max-tokens {max_tokens} \\
    --gpu-memory-utilization {gpu_memory_utilization} \\
    {"--include-thinking" if include_thinking else ""}
```

## Performance

- **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second
- **GPU Configuration**: vLLM with {gpu_memory_utilization:.0%} GPU memory utilization
- **Model Size**: 8.29B parameters

Generated with πŸ€– [UV Scripts](https://huggingface.co/uv-scripts)
"""


def main(
    input_dataset: str,
    output_dataset: str,
    image_column: str = "image",
    batch_size: int = 16,
    model: str = "numind/NuMarkdown-8B-Thinking",
    max_model_len: int = 16384,
    max_tokens: int = 8192,
    gpu_memory_utilization: float = 0.9,
    hf_token: str = None,
    split: str = "train",
    max_samples: int = None,
    private: bool = False,
    shuffle: bool = False,
    seed: int = 42,
    include_thinking: bool = False,
    temperature: float = 0.0,
    custom_prompt: Optional[str] = None,
):
    """Process images from HF dataset through NuMarkdown model."""
    
    # Check CUDA availability first
    check_cuda_availability()
    
    # Track processing start time
    start_time = datetime.now()
    
    # Enable HF_TRANSFER for faster downloads
    os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
    
    # Login to HF if token provided
    HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
    if HF_TOKEN:
        login(token=HF_TOKEN)
    
    # Load dataset
    logger.info(f"Loading dataset: {input_dataset}")
    dataset = load_dataset(input_dataset, split=split)
    
    # Validate image column
    if image_column not in dataset.column_names:
        raise ValueError(
            f"Column '{image_column}' not found. Available: {dataset.column_names}"
        )
    
    # Shuffle if requested
    if shuffle:
        logger.info(f"Shuffling dataset with seed {seed}")
        dataset = dataset.shuffle(seed=seed)
    
    # Limit samples if requested
    if max_samples:
        dataset = dataset.select(range(min(max_samples, len(dataset))))
        logger.info(f"Limited to {len(dataset)} samples")
    
    # Initialize vLLM with trust_remote_code for NuMarkdown
    logger.info(f"Initializing vLLM with model: {model}")
    llm = LLM(
        model=model,
        trust_remote_code=True,  # Required for NuMarkdown
        max_model_len=max_model_len,
        gpu_memory_utilization=gpu_memory_utilization,
        limit_mm_per_prompt={"image": 1},
    )
    
    # Set up sampling parameters
    sampling_params = SamplingParams(
        temperature=temperature,
        max_tokens=max_tokens,
    )
    
    # Use custom prompt if provided, otherwise use default
    prompt = custom_prompt or "Convert this document to markdown. Focus on preserving structure, tables, formulas, and all textual content."
    
    # Process images in batches
    all_markdown = []
    
    logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
    logger.info(f"Including thinking traces: {include_thinking}")
    
    # Process in batches to avoid memory issues
    for batch_indices in tqdm(
        partition_all(batch_size, range(len(dataset))),
        total=(len(dataset) + batch_size - 1) // batch_size,
        desc="OCR processing",
    ):
        batch_indices = list(batch_indices)
        batch_images = [dataset[i][image_column] for i in batch_indices]
        
        try:
            # Create messages for batch
            batch_messages = [
                make_numarkdown_message(img, prompt) for img in batch_images
            ]
            
            # Process with vLLM
            outputs = llm.chat(batch_messages, sampling_params)
            
            # Extract markdown from outputs
            for output in outputs:
                raw_text = output.outputs[0].text.strip()
                # Extract answer from thinking tokens
                markdown_text = extract_answer_from_thinking(raw_text, include_thinking)
                all_markdown.append(markdown_text)
        
        except Exception as e:
            logger.error(f"Error processing batch: {e}")
            # Add error placeholders for failed batch
            all_markdown.extend(["[OCR FAILED]"] * len(batch_images))
    
    # Add markdown column to dataset
    logger.info("Adding markdown column to dataset")
    dataset = dataset.add_column("markdown", all_markdown)
    
    # Handle inference_info tracking
    logger.info("Updating inference_info...")
    
    # Check for existing inference_info
    if "inference_info" in dataset.column_names:
        # Parse existing info from first row (all rows have same info)
        try:
            existing_info = json.loads(dataset[0]["inference_info"])
            if not isinstance(existing_info, list):
                existing_info = [existing_info]  # Convert old format to list
        except (json.JSONDecodeError, TypeError):
            existing_info = []
        # Remove old column to update it
        dataset = dataset.remove_columns(["inference_info"])
    else:
        existing_info = []
    
    # Add new inference info
    new_info = {
        "column_name": "markdown",
        "model_id": model,
        "processing_date": datetime.now().isoformat(),
        "batch_size": batch_size,
        "max_tokens": max_tokens,
        "gpu_memory_utilization": gpu_memory_utilization,
        "max_model_len": max_model_len,
        "include_thinking": include_thinking,
        "temperature": temperature,
        "prompt": prompt,
        "script": "numarkdown-ocr.py",
        "script_version": "1.0.0",
        "script_url": "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py"
    }
    existing_info.append(new_info)
    
    # Add updated inference_info column
    info_json = json.dumps(existing_info, ensure_ascii=False)
    dataset = dataset.add_column("inference_info", [info_json] * len(dataset))
    
    # Push to hub
    logger.info(f"Pushing to {output_dataset}")
    dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
    
    # Calculate processing time
    end_time = datetime.now()
    processing_duration = end_time - start_time
    processing_time = f"{processing_duration.total_seconds() / 60:.1f} minutes"
    
    # Create and push dataset card
    logger.info("Creating dataset card...")
    card_content = create_dataset_card(
        source_dataset=input_dataset,
        model=model,
        num_samples=len(dataset),
        processing_time=processing_time,
        batch_size=batch_size,
        max_model_len=max_model_len,
        max_tokens=max_tokens,
        gpu_memory_utilization=gpu_memory_utilization,
        include_thinking=include_thinking,
        image_column=image_column,
        split=split,
    )
    
    # Handle dataset card push with proper repo_id
    full_repo_id = output_dataset
    try:
        card = DatasetCard(card_content)
        # If output_dataset doesn't contain a username, get the current user's name
        if "/" not in output_dataset:
            api = HfApi(token=HF_TOKEN)
            user_info = api.whoami()
            full_repo_id = f"{user_info['name']}/{output_dataset}"
            logger.info(f"Using full repo ID: {full_repo_id}")
        
        card.push_to_hub(full_repo_id, token=HF_TOKEN)
        logger.info("βœ… Dataset card created and pushed!")
    except Exception as e:
        logger.warning(f"Could not push dataset card: {e}")
        logger.info("Dataset was successfully created but card upload failed. You can add it manually.")
    
    logger.info("βœ… OCR conversion complete!")
    logger.info(
        f"Dataset available at: https://huggingface.co/datasets/{full_repo_id}"
    )


if __name__ == "__main__":
    # Show example usage if no arguments
    if len(sys.argv) == 1:
        print("=" * 80)
        print("NuMarkdown-8B-Thinking OCR with Reasoning")
        print("=" * 80)
        print("\nThis script converts document images to markdown using")
        print("the NuMarkdown-8B-Thinking model with advanced reasoning capabilities.")
        print("\nFeatures:")
        print("- 🧠 Reasoning-based document analysis")
        print("- πŸ“Š Superior table extraction and formatting")
        print("- πŸ“ Mathematical formula recognition")
        print("- πŸ“ Complex layout understanding")
        print("- ✨ Clean markdown generation")
        print("- πŸ” Optional thinking trace inclusion")
        print("\nExample usage:")
        print("\n1. Basic OCR conversion:")
        print("   uv run numarkdown-ocr.py document-images markdown-docs")
        print("\n2. Include thinking traces:")
        print("   uv run numarkdown-ocr.py complex-docs analyzed-docs --include-thinking")
        print("\n3. With custom settings:")
        print("   uv run numarkdown-ocr.py scientific-papers extracted-text \\")
        print("       --batch-size 8 \\")
        print("       --max-tokens 8192 \\")
        print("       --gpu-memory-utilization 0.9")
        print("\n4. Process a subset for testing:")
        print("   uv run numarkdown-ocr.py large-dataset test-output --max-samples 10")
        print("\n5. Custom prompt for specific needs:")
        print("   uv run numarkdown-ocr.py invoices invoice-data \\")
        print('       --custom-prompt "Extract all invoice details including line items"')
        print("\n6. Running on HF Jobs:")
        print("   hf jobs uv run --flavor l4x1 \\")
        print('     -e HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \\')
        print("     https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py \\")
        print("       your-document-dataset \\")
        print("       your-markdown-output")
        print("\n" + "=" * 80)
        print("\nFor full help, run: uv run numarkdown-ocr.py --help")
        sys.exit(0)
    
    parser = argparse.ArgumentParser(
        description="OCR images to markdown using NuMarkdown-8B-Thinking with reasoning",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Examples:
  # Basic usage
  uv run numarkdown-ocr.py my-images-dataset ocr-results
  
  # Include thinking traces in output
  uv run numarkdown-ocr.py documents analyzed-docs --include-thinking
  
  # Process subset for testing
  uv run numarkdown-ocr.py large-dataset test-output --max-samples 100
  
  # Custom prompt for specific extraction
  uv run numarkdown-ocr.py forms form-data --custom-prompt "Extract all form fields and values"
  
  # Random sample from dataset
  uv run numarkdown-ocr.py ordered-dataset random-sample --max-samples 50 --shuffle
        """,
    )
    
    parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
    parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
    parser.add_argument(
        "--image-column",
        default="image",
        help="Column containing images (default: image)",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        default=16,
        help="Batch size for processing (default: 16, lower than others due to model size)",
    )
    parser.add_argument(
        "--model",
        default="numind/NuMarkdown-8B-Thinking",
        help="Model to use (default: numind/NuMarkdown-8B-Thinking)",
    )
    parser.add_argument(
        "--max-model-len",
        type=int,
        default=16384,
        help="Maximum model context length (default: 16384)",
    )
    parser.add_argument(
        "--max-tokens",
        type=int,
        default=8192,
        help="Maximum tokens to generate (default: 8192)",
    )
    parser.add_argument(
        "--gpu-memory-utilization",
        type=float,
        default=0.9,
        help="GPU memory utilization (default: 0.9)",
    )
    parser.add_argument("--hf-token", help="Hugging Face API token")
    parser.add_argument(
        "--split", default="train", help="Dataset split to use (default: train)"
    )
    parser.add_argument(
        "--max-samples",
        type=int,
        help="Maximum number of samples to process (for testing)",
    )
    parser.add_argument(
        "--private", action="store_true", help="Make output dataset private"
    )
    parser.add_argument(
        "--shuffle",
        action="store_true",
        help="Shuffle the dataset before processing (useful for random sampling)",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="Random seed for shuffling (default: 42)",
    )
    parser.add_argument(
        "--include-thinking",
        action="store_true",
        help="Include thinking traces in output (default: only final answers)",
    )
    parser.add_argument(
        "--temperature",
        type=float,
        default=0.0,
        help="Temperature for generation (default: 0.0 for deterministic)",
    )
    parser.add_argument(
        "--custom-prompt",
        type=str,
        help="Custom prompt for the model (overrides default)",
    )
    
    args = parser.parse_args()
    
    main(
        input_dataset=args.input_dataset,
        output_dataset=args.output_dataset,
        image_column=args.image_column,
        batch_size=args.batch_size,
        model=args.model,
        max_model_len=args.max_model_len,
        max_tokens=args.max_tokens,
        gpu_memory_utilization=args.gpu_memory_utilization,
        hf_token=args.hf_token,
        split=args.split,
        max_samples=args.max_samples,
        private=args.private,
        shuffle=args.shuffle,
        seed=args.seed,
        include_thinking=args.include_thinking,
        temperature=args.temperature,
        custom_prompt=args.custom_prompt,
    )