File size: 22,176 Bytes
b366864 a7e4157 b366864 a7e4157 b366864 a7e4157 b366864 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
# /// script
# requires-python = ">=3.11"
# dependencies = [
# "datasets",
# "huggingface-hub[hf_transfer]",
# "pillow",
# "vllm",
# "tqdm",
# "toolz",
# "torch", # Added for CUDA check
# ]
#
# ///
"""
Convert document images to markdown using NuMarkdown-8B-Thinking with vLLM.
This script processes images through the NuMarkdown model to extract
text with advanced reasoning capabilities, ideal for complex document understanding.
Features:
- Reasoning-based document analysis with thinking tokens
- Superior table extraction and formatting
- Complex layout understanding
- Mathematical formula recognition
- Clean markdown output generation
- Optional thinking trace inclusion
"""
import argparse
import base64
import io
import json
import logging
import os
import re
import sys
from typing import Any, Dict, List, Union, Optional, Tuple
from datetime import datetime
import torch
from datasets import load_dataset
from huggingface_hub import DatasetCard, HfApi, login
from PIL import Image
from toolz import partition_all
from tqdm.auto import tqdm
from vllm import LLM, SamplingParams
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def check_cuda_availability():
"""Check if CUDA is available and exit if not."""
if not torch.cuda.is_available():
logger.error("CUDA is not available. This script requires a GPU.")
logger.error("Please run on a machine with a CUDA-capable GPU.")
sys.exit(1)
else:
logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
def validate_and_resize_image(
image: Image.Image,
min_pixels: int = 100 * 28 * 28,
max_pixels: int = 5000 * 28 * 28,
) -> Image.Image:
"""Validate and resize image to meet pixel constraints if necessary."""
width, height = image.size
total_pixels = width * height
if total_pixels < min_pixels or total_pixels > max_pixels:
# Calculate scaling factor
if total_pixels < min_pixels:
scale = (min_pixels / total_pixels) ** 0.5
else:
scale = (max_pixels / total_pixels) ** 0.5
new_width = int(width * scale)
new_height = int(height * scale)
logger.debug(f"Resizing image from {width}x{height} to {new_width}x{new_height}")
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
return image
def extract_answer_from_thinking(text: str, include_thinking: bool = False) -> str:
"""
Extract the final answer from NuMarkdown's thinking output.
The model generates output in format:
<think>reasoning process...</think>
<answer>final markdown output</answer>
"""
if include_thinking:
# Return the full output including thinking traces
return text.strip()
# Extract content between <answer> tags
answer_pattern = r'<answer>(.*?)</answer>'
answer_match = re.search(answer_pattern, text, re.DOTALL)
if answer_match:
return answer_match.group(1).strip()
# If no answer tags found, check if the entire text is markdown
# (sometimes the model might not use tags)
if not '<think>' in text and not '<answer>' in text:
return text.strip()
# Fallback: return everything after </think> if present
think_end = text.find('</think>')
if think_end != -1:
remaining = text[think_end + 8:].strip()
# Remove <answer> tags if present
remaining = remaining.replace('<answer>', '').replace('</answer>', '').strip()
return remaining
# Last resort: return the full text
logger.warning("Could not extract answer from thinking tokens, returning full text")
return text.strip()
def make_numarkdown_message(
image: Union[Image.Image, Dict[str, Any], str],
prompt: str = "Convert this document to markdown. Focus on preserving structure, tables, formulas, and all textual content.",
) -> List[Dict]:
"""Create chat message for NuMarkdown processing."""
# Convert to PIL Image if needed
if isinstance(image, Image.Image):
pil_img = image.convert("RGB")
elif isinstance(image, dict) and "bytes" in image:
pil_img = Image.open(io.BytesIO(image["bytes"])).convert("RGB")
elif isinstance(image, str):
pil_img = Image.open(image).convert("RGB")
else:
raise ValueError(f"Unsupported image type: {type(image)}")
# Validate and resize if necessary
pil_img = validate_and_resize_image(pil_img)
# Convert to base64 data URI
buf = io.BytesIO()
pil_img.save(buf, format="PNG")
data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"
# Return message in vLLM chat format
return [
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": data_uri}},
{"type": "text", "text": prompt},
],
}
]
def create_dataset_card(
source_dataset: str,
model: str,
num_samples: int,
processing_time: str,
batch_size: int,
max_model_len: int,
max_tokens: int,
gpu_memory_utilization: float,
include_thinking: bool,
image_column: str = "image",
split: str = "train",
) -> str:
"""Create a dataset card documenting the OCR process."""
model_name = model.split("/")[-1]
return f"""---
tags:
- ocr
- document-processing
- numarkdown
- markdown
- reasoning
- thinking-tokens
- uv-script
- generated
---
# Document OCR using {model_name}
This dataset contains markdown-formatted OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using NuMarkdown-8B-Thinking.
## Processing Details
- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
- **Model**: [{model}](https://huggingface.co/{model})
- **Number of Samples**: {num_samples:,}
- **Processing Time**: {processing_time}
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")}
### Configuration
- **Image Column**: `{image_column}`
- **Output Column**: `markdown`
- **Dataset Split**: `{split}`
- **Batch Size**: {batch_size}
- **Max Model Length**: {max_model_len:,} tokens
- **Max Output Tokens**: {max_tokens:,}
- **GPU Memory Utilization**: {gpu_memory_utilization:.1%}
- **Thinking Traces**: {"Included" if include_thinking else "Excluded (only final answers)"}
## Model Information
NuMarkdown-8B-Thinking is a state-of-the-art reasoning-based document OCR model that excels at:
- π§ **Reasoning Process** - Analyzes document layout before generation
- π **Complex Tables** - Superior table extraction and formatting
- π **Mathematical Formulas** - Accurate LaTeX/math notation preservation
- π **Document Structure** - Maintains hierarchical document organization
- π **Layout Analysis** - Understands complex multi-column layouts
- β¨ **Clean Output** - Generates well-formatted markdown
### Thinking Tokens
This model uses a unique "thinking" process where it:
1. Analyzes the document structure internally (`<think>` phase)
2. Generates the final markdown output (`<answer>` phase)
{"The dataset includes both thinking traces and final answers." if include_thinking else "Only the final answers are included (thinking traces removed)."}
## Dataset Structure
The dataset contains all original columns plus:
- `markdown`: The extracted text in markdown format
- `inference_info`: JSON list tracking all OCR models applied to this dataset
## Usage
```python
from datasets import load_dataset
import json
# Load the dataset
dataset = load_dataset("{{output_dataset_id}}", split="{split}")
# Access the markdown text
for example in dataset:
print(example["markdown"])
break
# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}")
```
## Reproduction
This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) NuMarkdown OCR script:
```bash
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py \\
{source_dataset} \\
<output-dataset> \\
--image-column {image_column} \\
--batch-size {batch_size} \\
--max-model-len {max_model_len} \\
--max-tokens {max_tokens} \\
--gpu-memory-utilization {gpu_memory_utilization} \\
{"--include-thinking" if include_thinking else ""}
```
## Performance
- **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second
- **GPU Configuration**: vLLM with {gpu_memory_utilization:.0%} GPU memory utilization
- **Model Size**: 8.29B parameters
Generated with π€ [UV Scripts](https://huggingface.co/uv-scripts)
"""
def main(
input_dataset: str,
output_dataset: str,
image_column: str = "image",
batch_size: int = 16,
model: str = "numind/NuMarkdown-8B-Thinking",
max_model_len: int = 16384,
max_tokens: int = 8192,
gpu_memory_utilization: float = 0.9,
hf_token: str = None,
split: str = "train",
max_samples: int = None,
private: bool = False,
shuffle: bool = False,
seed: int = 42,
include_thinking: bool = False,
temperature: float = 0.0,
custom_prompt: Optional[str] = None,
):
"""Process images from HF dataset through NuMarkdown model."""
# Check CUDA availability first
check_cuda_availability()
# Track processing start time
start_time = datetime.now()
# Enable HF_TRANSFER for faster downloads
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
# Login to HF if token provided
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
# Load dataset
logger.info(f"Loading dataset: {input_dataset}")
dataset = load_dataset(input_dataset, split=split)
# Validate image column
if image_column not in dataset.column_names:
raise ValueError(
f"Column '{image_column}' not found. Available: {dataset.column_names}"
)
# Shuffle if requested
if shuffle:
logger.info(f"Shuffling dataset with seed {seed}")
dataset = dataset.shuffle(seed=seed)
# Limit samples if requested
if max_samples:
dataset = dataset.select(range(min(max_samples, len(dataset))))
logger.info(f"Limited to {len(dataset)} samples")
# Initialize vLLM with trust_remote_code for NuMarkdown
logger.info(f"Initializing vLLM with model: {model}")
llm = LLM(
model=model,
trust_remote_code=True, # Required for NuMarkdown
max_model_len=max_model_len,
gpu_memory_utilization=gpu_memory_utilization,
limit_mm_per_prompt={"image": 1},
)
# Set up sampling parameters
sampling_params = SamplingParams(
temperature=temperature,
max_tokens=max_tokens,
)
# Use custom prompt if provided, otherwise use default
prompt = custom_prompt or "Convert this document to markdown. Focus on preserving structure, tables, formulas, and all textual content."
# Process images in batches
all_markdown = []
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
logger.info(f"Including thinking traces: {include_thinking}")
# Process in batches to avoid memory issues
for batch_indices in tqdm(
partition_all(batch_size, range(len(dataset))),
total=(len(dataset) + batch_size - 1) // batch_size,
desc="OCR processing",
):
batch_indices = list(batch_indices)
batch_images = [dataset[i][image_column] for i in batch_indices]
try:
# Create messages for batch
batch_messages = [
make_numarkdown_message(img, prompt) for img in batch_images
]
# Process with vLLM
outputs = llm.chat(batch_messages, sampling_params)
# Extract markdown from outputs
for output in outputs:
raw_text = output.outputs[0].text.strip()
# Extract answer from thinking tokens
markdown_text = extract_answer_from_thinking(raw_text, include_thinking)
all_markdown.append(markdown_text)
except Exception as e:
logger.error(f"Error processing batch: {e}")
# Add error placeholders for failed batch
all_markdown.extend(["[OCR FAILED]"] * len(batch_images))
# Add markdown column to dataset
logger.info("Adding markdown column to dataset")
dataset = dataset.add_column("markdown", all_markdown)
# Handle inference_info tracking
logger.info("Updating inference_info...")
# Check for existing inference_info
if "inference_info" in dataset.column_names:
# Parse existing info from first row (all rows have same info)
try:
existing_info = json.loads(dataset[0]["inference_info"])
if not isinstance(existing_info, list):
existing_info = [existing_info] # Convert old format to list
except (json.JSONDecodeError, TypeError):
existing_info = []
# Remove old column to update it
dataset = dataset.remove_columns(["inference_info"])
else:
existing_info = []
# Add new inference info
new_info = {
"column_name": "markdown",
"model_id": model,
"processing_date": datetime.now().isoformat(),
"batch_size": batch_size,
"max_tokens": max_tokens,
"gpu_memory_utilization": gpu_memory_utilization,
"max_model_len": max_model_len,
"include_thinking": include_thinking,
"temperature": temperature,
"prompt": prompt,
"script": "numarkdown-ocr.py",
"script_version": "1.0.0",
"script_url": "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py"
}
existing_info.append(new_info)
# Add updated inference_info column
info_json = json.dumps(existing_info, ensure_ascii=False)
dataset = dataset.add_column("inference_info", [info_json] * len(dataset))
# Push to hub
logger.info(f"Pushing to {output_dataset}")
dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
# Calculate processing time
end_time = datetime.now()
processing_duration = end_time - start_time
processing_time = f"{processing_duration.total_seconds() / 60:.1f} minutes"
# Create and push dataset card
logger.info("Creating dataset card...")
card_content = create_dataset_card(
source_dataset=input_dataset,
model=model,
num_samples=len(dataset),
processing_time=processing_time,
batch_size=batch_size,
max_model_len=max_model_len,
max_tokens=max_tokens,
gpu_memory_utilization=gpu_memory_utilization,
include_thinking=include_thinking,
image_column=image_column,
split=split,
)
# Handle dataset card push with proper repo_id
full_repo_id = output_dataset
try:
card = DatasetCard(card_content)
# If output_dataset doesn't contain a username, get the current user's name
if "/" not in output_dataset:
api = HfApi(token=HF_TOKEN)
user_info = api.whoami()
full_repo_id = f"{user_info['name']}/{output_dataset}"
logger.info(f"Using full repo ID: {full_repo_id}")
card.push_to_hub(full_repo_id, token=HF_TOKEN)
logger.info("β
Dataset card created and pushed!")
except Exception as e:
logger.warning(f"Could not push dataset card: {e}")
logger.info("Dataset was successfully created but card upload failed. You can add it manually.")
logger.info("β
OCR conversion complete!")
logger.info(
f"Dataset available at: https://huggingface.co/datasets/{full_repo_id}"
)
if __name__ == "__main__":
# Show example usage if no arguments
if len(sys.argv) == 1:
print("=" * 80)
print("NuMarkdown-8B-Thinking OCR with Reasoning")
print("=" * 80)
print("\nThis script converts document images to markdown using")
print("the NuMarkdown-8B-Thinking model with advanced reasoning capabilities.")
print("\nFeatures:")
print("- π§ Reasoning-based document analysis")
print("- π Superior table extraction and formatting")
print("- π Mathematical formula recognition")
print("- π Complex layout understanding")
print("- β¨ Clean markdown generation")
print("- π Optional thinking trace inclusion")
print("\nExample usage:")
print("\n1. Basic OCR conversion:")
print(" uv run numarkdown-ocr.py document-images markdown-docs")
print("\n2. Include thinking traces:")
print(" uv run numarkdown-ocr.py complex-docs analyzed-docs --include-thinking")
print("\n3. With custom settings:")
print(" uv run numarkdown-ocr.py scientific-papers extracted-text \\")
print(" --batch-size 8 \\")
print(" --max-tokens 8192 \\")
print(" --gpu-memory-utilization 0.9")
print("\n4. Process a subset for testing:")
print(" uv run numarkdown-ocr.py large-dataset test-output --max-samples 10")
print("\n5. Custom prompt for specific needs:")
print(" uv run numarkdown-ocr.py invoices invoice-data \\")
print(' --custom-prompt "Extract all invoice details including line items"')
print("\n6. Running on HF Jobs:")
print(" hf jobs uv run --flavor l4x1 \\")
print(' -e HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \\')
print(" https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py \\")
print(" your-document-dataset \\")
print(" your-markdown-output")
print("\n" + "=" * 80)
print("\nFor full help, run: uv run numarkdown-ocr.py --help")
sys.exit(0)
parser = argparse.ArgumentParser(
description="OCR images to markdown using NuMarkdown-8B-Thinking with reasoning",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Basic usage
uv run numarkdown-ocr.py my-images-dataset ocr-results
# Include thinking traces in output
uv run numarkdown-ocr.py documents analyzed-docs --include-thinking
# Process subset for testing
uv run numarkdown-ocr.py large-dataset test-output --max-samples 100
# Custom prompt for specific extraction
uv run numarkdown-ocr.py forms form-data --custom-prompt "Extract all form fields and values"
# Random sample from dataset
uv run numarkdown-ocr.py ordered-dataset random-sample --max-samples 50 --shuffle
""",
)
parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
parser.add_argument(
"--image-column",
default="image",
help="Column containing images (default: image)",
)
parser.add_argument(
"--batch-size",
type=int,
default=16,
help="Batch size for processing (default: 16, lower than others due to model size)",
)
parser.add_argument(
"--model",
default="numind/NuMarkdown-8B-Thinking",
help="Model to use (default: numind/NuMarkdown-8B-Thinking)",
)
parser.add_argument(
"--max-model-len",
type=int,
default=16384,
help="Maximum model context length (default: 16384)",
)
parser.add_argument(
"--max-tokens",
type=int,
default=8192,
help="Maximum tokens to generate (default: 8192)",
)
parser.add_argument(
"--gpu-memory-utilization",
type=float,
default=0.9,
help="GPU memory utilization (default: 0.9)",
)
parser.add_argument("--hf-token", help="Hugging Face API token")
parser.add_argument(
"--split", default="train", help="Dataset split to use (default: train)"
)
parser.add_argument(
"--max-samples",
type=int,
help="Maximum number of samples to process (for testing)",
)
parser.add_argument(
"--private", action="store_true", help="Make output dataset private"
)
parser.add_argument(
"--shuffle",
action="store_true",
help="Shuffle the dataset before processing (useful for random sampling)",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="Random seed for shuffling (default: 42)",
)
parser.add_argument(
"--include-thinking",
action="store_true",
help="Include thinking traces in output (default: only final answers)",
)
parser.add_argument(
"--temperature",
type=float,
default=0.0,
help="Temperature for generation (default: 0.0 for deterministic)",
)
parser.add_argument(
"--custom-prompt",
type=str,
help="Custom prompt for the model (overrides default)",
)
args = parser.parse_args()
main(
input_dataset=args.input_dataset,
output_dataset=args.output_dataset,
image_column=args.image_column,
batch_size=args.batch_size,
model=args.model,
max_model_len=args.max_model_len,
max_tokens=args.max_tokens,
gpu_memory_utilization=args.gpu_memory_utilization,
hf_token=args.hf_token,
split=args.split,
max_samples=args.max_samples,
private=args.private,
shuffle=args.shuffle,
seed=args.seed,
include_thinking=args.include_thinking,
temperature=args.temperature,
custom_prompt=args.custom_prompt,
) |