File size: 15,917 Bytes
1160c58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a3a1cc
1160c58
 
 
2a3a1cc
 
 
 
1160c58
2a3a1cc
1160c58
2a3a1cc
1160c58
 
 
2a3a1cc
1160c58
 
 
2a3a1cc
1160c58
14544c7
 
1160c58
14544c7
1160c58
14544c7
 
 
 
 
1160c58
 
14544c7
1160c58
14544c7
 
 
2a3a1cc
14544c7
1160c58
 
14544c7
 
1160c58
 
 
 
 
 
 
14544c7
1160c58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a3a1cc
1160c58
 
 
 
2a3a1cc
1160c58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a3a1cc
1160c58
14544c7
 
1160c58
 
 
14544c7
1160c58
14544c7
 
 
 
1160c58
 
14544c7
 
1160c58
2a3a1cc
 
14544c7
2a3a1cc
1160c58
 
14544c7
 
 
 
 
 
 
 
1160c58
14544c7
 
 
 
1160c58
 
 
 
 
 
 
14544c7
1160c58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
# /// script
# requires-python = ">=3.10"
# dependencies = [
#     "marimo",
#     "datasets",
#     "transformers",
#     "torch",
#     "torchvision",
#     "huggingface-hub",
#     "evaluate",
#     "accelerate",
#     "scikit-learn",
# ]
# ///
"""
Train an Image Classifier

This marimo notebook fine-tunes a Vision Transformer (ViT) for image classification.

Two ways to run:
- Tutorial: uvx marimo edit --sandbox train-image-classifier.py
- Script: uv run train-image-classifier.py --dataset beans --output-repo user/my-model

On HF Jobs (GPU):
hf jobs uv run --flavor l4x1 --secrets HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/marimo/raw/main/train-image-classifier.py \
    -- --dataset beans --output-repo user/beans-vit --epochs 5
"""

import marimo

__generated_with = "0.19.6"
app = marimo.App(width="medium")


@app.cell
def _():
    import marimo as mo
    return (mo,)


@app.cell
def _(mo):
    mo.md("""
    # Train an Image Classifier

    This notebook fine-tunes a Vision Transformer (ViT) for image classification.

    **Two ways to run:**
    - **Tutorial**: `uvx marimo edit --sandbox train-image-classifier.py`
    - **Script**: `uv run train-image-classifier.py --dataset beans --output-repo user/my-model`

    The same code powers both experiences!
    """)
    return


@app.cell
def _(mo):
    mo.md("""
    ## Running on HF Jobs (GPU)

    This notebook can run on [Hugging Face Jobs](https://huggingface.co/docs/hub/jobs) for GPU training.
    No local GPU needed - just run:

    ```bash
    hf jobs uv run --flavor l4x1 --secrets HF_TOKEN \\
        https://huggingface.co/datasets/uv-scripts/marimo/raw/main/train-image-classifier.py \\
        -- --dataset beans --output-repo your-username/beans-vit --epochs 5 --push-to-hub
    ```

    **GPU Flavors:**
    | Flavor | GPU | VRAM | Best for |
    |--------|-----|------|----------|
    | `l4x1` | L4 | 24GB | Most fine-tuning tasks |
    | `a10gx1` | A10G | 24GB | Slightly faster than L4 |
    | `a100x1` | A100 | 40GB | Large models, big batches |

    **Key flags:**
    - `--secrets HF_TOKEN` - Passes your HF token for pushing models
    - `--` - Separates `hf jobs` args from script args
    - `--push-to-hub` - Actually pushes the model (otherwise just saves locally)

    **Tip:** Start with `beans` dataset and 1-3 epochs to test, then scale up!
    """)
    return


@app.cell
def _(mo):
    mo.md("""
    ## Step 1: Configuration

    Set up training parameters. In interactive mode, use the controls below.
    In script mode, pass command-line arguments.
    """)
    return


@app.cell
def _(mo):
    import argparse

    # Parse CLI args (works in both modes)
    parser = argparse.ArgumentParser(description="Fine-tune ViT for image classification")
    parser.add_argument(
        "--dataset",
        default="beans",
        help="HF dataset name (must be image classification dataset)",
    )
    parser.add_argument(
        "--model",
        default="google/vit-base-patch16-224-in21k",
        help="Pretrained model to fine-tune",
    )
    parser.add_argument(
        "--output-repo",
        default=None,
        help="Where to push trained model (e.g., user/my-model)",
    )
    parser.add_argument("--epochs", type=int, default=3, help="Number of training epochs")
    parser.add_argument("--batch-size", type=int, default=16, help="Batch size")
    parser.add_argument("--lr", type=float, default=5e-5, help="Learning rate")
    parser.add_argument(
        "--push-to-hub",
        action="store_true",
        default=False,
        help="Push model to Hub after training",
    )
    args, _ = parser.parse_known_args()

    # Interactive controls (shown in notebook mode)
    dataset_input = mo.ui.text(value=args.dataset, label="Dataset")
    model_input = mo.ui.text(value=args.model, label="Model")
    output_input = mo.ui.text(value=args.output_repo or "", label="Output Repo")
    epochs_input = mo.ui.slider(1, 20, value=args.epochs, label="Epochs")
    batch_size_input = mo.ui.dropdown(
        options=["8", "16", "32", "64"], value=str(args.batch_size), label="Batch Size"
    )
    lr_input = mo.ui.dropdown(
        options=["1e-5", "2e-5", "5e-5", "1e-4"],
        value=f"{args.lr:.0e}".replace("e-0", "e-"),
        label="Learning Rate",
    )

    mo.vstack(
        [
            mo.hstack([dataset_input, model_input]),
            mo.hstack([output_input]),
            mo.hstack([epochs_input, batch_size_input, lr_input]),
        ]
    )
    return (
        args,
        batch_size_input,
        dataset_input,
        epochs_input,
        lr_input,
        model_input,
        output_input,
    )


@app.cell
def _(
    args,
    batch_size_input,
    dataset_input,
    epochs_input,
    lr_input,
    model_input,
    output_input,
):
    # Resolve values (interactive takes precedence)
    dataset_name = dataset_input.value or args.dataset
    model_name = model_input.value or args.model
    output_repo = output_input.value or args.output_repo
    num_epochs = epochs_input.value or args.epochs
    batch_size = int(batch_size_input.value) if batch_size_input.value else args.batch_size
    learning_rate = float(lr_input.value) if lr_input.value else args.lr

    print("Configuration:")
    print(f"  Dataset: {dataset_name}")
    print(f"  Model: {model_name}")
    print(f"  Output: {output_repo or '(not pushing to Hub)'}")
    print(f"  Epochs: {num_epochs}, Batch Size: {batch_size}, LR: {learning_rate}")
    return (
        batch_size,
        dataset_name,
        learning_rate,
        model_name,
        num_epochs,
        output_repo,
    )


@app.cell
def _(mo):
    mo.md("""
    ## Step 2: Load Dataset

    We'll load an image classification dataset from the Hub.
    The `beans` dataset is small (~1000 images) and trains quickly - perfect for learning!
    """)
    return


@app.cell
def _(dataset_name, mo):
    from datasets import load_dataset

    print(f"Loading dataset: {dataset_name}...")
    dataset = load_dataset(dataset_name)
    print(f"Train: {len(dataset['train']):,} samples")
    print(f"Test: {len(dataset['test']):,} samples")

    # Get label column name (datasets use 'label' or 'labels')
    _features = dataset["train"].features
    label_column = "label" if "label" in _features else "labels"
    label_feature = _features[label_column]
    labels = label_feature.names if hasattr(label_feature, "names") else None
    num_labels = label_feature.num_classes if hasattr(label_feature, "num_classes") else len(set(dataset["train"][label_column]))

    print(f"Label column: '{label_column}'")
    print(f"Labels ({num_labels}): {labels}")

    mo.md(f"**Loaded {len(dataset['train']):,} training samples with {num_labels} classes**")
    return dataset, label_column, labels, num_labels


@app.cell
def _(dataset, label_column, labels, mo):
    # Show sample images (notebook mode only)
    import base64 as _base64
    from io import BytesIO as _BytesIO

    def _image_to_base64(img, max_size=150):
        """Convert PIL image to base64 for HTML display."""
        _img_copy = img.copy()
        _img_copy.thumbnail((max_size, max_size))
        _buffered = _BytesIO()
        _img_copy.save(_buffered, format="PNG")
        return _base64.b64encode(_buffered.getvalue()).decode()

    # Get 6 sample images with different labels
    _samples = dataset["train"].shuffle(seed=42).select(range(6))

    _images_html = []
    for _sample in _samples:
        _img_b64 = _image_to_base64(_sample["image"])
        _label_name = labels[_sample[label_column]] if labels else _sample[label_column]
        _images_html.append(
            f"""
            <div style="text-align: center; margin: 5px;">
                <img src="data:image/png;base64,{_img_b64}" style="border-radius: 8px;"/>
                <br/><small>{_label_name}</small>
            </div>
            """
        )

    mo.md(f"""
    ### Sample Images
    <div style="display: flex; flex-wrap: wrap; gap: 10px;">
    {"".join(_images_html)}
    </div>
    """)
    return


@app.cell
def _(mo):
    mo.md("""
    ## Step 3: Prepare Model and Processor

    We load a pretrained Vision Transformer and its image processor.
    The processor handles resizing and normalization to match the model's training.
    """)
    return


@app.cell
def _(labels, model_name, num_labels):
    from transformers import AutoImageProcessor, AutoModelForImageClassification

    print(f"Loading model: {model_name}...")

    # Load image processor
    image_processor = AutoImageProcessor.from_pretrained(model_name)
    print(f"Image size: {image_processor.size}")

    # Load model with correct number of labels
    label2id = {label: i for i, label in enumerate(labels)} if labels else None
    id2label = {i: label for i, label in enumerate(labels)} if labels else None

    model = AutoModelForImageClassification.from_pretrained(
        model_name,
        num_labels=num_labels,
        label2id=label2id,
        id2label=id2label,
        ignore_mismatched_sizes=True,  # Classification head will be different
    )
    print(f"Model loaded with {num_labels} output classes")
    return id2label, image_processor, model


@app.cell
def _(mo):
    mo.md("""
    ## Step 4: Preprocess Data

    Apply the image processor to convert images into tensors suitable for the model.
    """)
    return


@app.cell
def _(dataset, image_processor, label_column):
    def preprocess(examples):
        """Apply image processor to batch of images."""
        images = [img.convert("RGB") for img in examples["image"]]
        inputs = image_processor(images, return_tensors="pt")
        inputs["labels"] = examples[label_column]  # Trainer expects 'labels'
        return inputs

    print("Preprocessing dataset...")
    processed_dataset = dataset.with_transform(preprocess)
    print("Preprocessing complete (transforms applied lazily)")
    return (processed_dataset,)


@app.cell
def _(mo):
    mo.md("""
    ## Step 5: Training

    We use the Hugging Face Trainer for a clean training loop with built-in logging.
    """)
    return


@app.cell
def _(
    batch_size,
    learning_rate,
    model,
    num_epochs,
    output_repo,
    processed_dataset,
):
    import evaluate
    import numpy as np
    from transformers import Trainer, TrainingArguments

    # Load accuracy metric
    accuracy_metric = evaluate.load("accuracy")

    def compute_metrics(eval_pred):
        predictions, labels = eval_pred
        predictions = np.argmax(predictions, axis=1)
        return accuracy_metric.compute(predictions=predictions, references=labels)

    # Training arguments
    training_args = TrainingArguments(
        output_dir="./image-classifier-output",
        num_train_epochs=num_epochs,
        per_device_train_batch_size=batch_size,
        per_device_eval_batch_size=batch_size,
        learning_rate=learning_rate,
        eval_strategy="epoch",
        save_strategy="epoch",
        logging_steps=10,
        load_best_model_at_end=True,
        metric_for_best_model="accuracy",
        push_to_hub=bool(output_repo),
        hub_model_id=output_repo if output_repo else None,
        remove_unused_columns=False,  # Keep image column for transforms
        report_to="none",  # Disable wandb/tensorboard for simplicity
    )

    # Create trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=processed_dataset["train"],
        eval_dataset=processed_dataset["test"],
        compute_metrics=compute_metrics,
    )

    print(f"Starting training for {num_epochs} epochs...")
    return (trainer,)


@app.cell
def _(trainer):
    # Run training
    train_result = trainer.train()
    print("\nTraining complete!")
    print(f"  Total steps: {train_result.global_step}")
    print(f"  Training loss: {train_result.training_loss:.4f}")
    return


@app.cell
def _(mo):
    mo.md("""
    ## Step 6: Evaluation

    Let's see how well our model performs on the test set.
    """)
    return


@app.cell
def _(trainer):
    # Evaluate on test set
    eval_results = trainer.evaluate()
    print("\nEvaluation Results:")
    print(f"  Accuracy: {eval_results['eval_accuracy']:.2%}")
    print(f"  Loss: {eval_results['eval_loss']:.4f}")
    return


@app.cell
def _(dataset, id2label, image_processor, label_column, mo, model):
    import torch
    import base64 as _b64
    from io import BytesIO as _BIO

    # Show some predictions (notebook mode)
    model.eval()
    _test_samples = dataset["test"].shuffle(seed=42).select(range(4))

    _prediction_html = []
    for _sample in _test_samples:
        _img = _sample["image"].convert("RGB")
        _inputs = image_processor(_img, return_tensors="pt")

        with torch.no_grad():
            _outputs = model(**_inputs)
            _pred_idx = _outputs.logits.argmax(-1).item()

        _true_idx = _sample[label_column]
        _true_label = id2label[_true_idx] if id2label else _true_idx
        _pred_label = id2label[_pred_idx] if id2label else _pred_idx
        _correct = "correct" if _pred_idx == _true_idx else "wrong"

        # Convert image for display
        _img_copy = _img.copy()
        _img_copy.thumbnail((120, 120))
        _buffered = _BIO()
        _img_copy.save(_buffered, format="PNG")
        _img_b64 = _b64.b64encode(_buffered.getvalue()).decode()

        _border_color = "#4ade80" if _correct == "correct" else "#f87171"
        _prediction_html.append(
            f"""
            <div style="text-align: center; margin: 5px; padding: 10px; border: 2px solid {_border_color}; border-radius: 8px;">
                <img src="data:image/png;base64,{_img_b64}" style="border-radius: 4px;"/>
                <br/><small>True: <b>{_true_label}</b></small>
                <br/><small>Pred: <b>{_pred_label}</b></small>
            </div>
            """
        )

    mo.md(f"""
    ### Sample Predictions
    <div style="display: flex; flex-wrap: wrap; gap: 10px;">
    {"".join(_prediction_html)}
    </div>
    <small>Green border = correct, Red border = wrong</small>
    """)
    return


@app.cell
def _(mo):
    mo.md("""
    ## Step 7: Push to Hub

    If you specified `--output-repo`, the model will be pushed to the Hugging Face Hub.
    """)
    return


@app.cell
def _(args, output_repo, trainer):
    if output_repo and args.push_to_hub:
        print(f"Pushing model to: https://huggingface.co/{output_repo}")
        trainer.push_to_hub()
        print("Model pushed successfully!")
    elif output_repo:
        print("Model saved locally. To push to Hub, add --push-to-hub flag.")
        print("  Or run: trainer.push_to_hub()")
    else:
        print("No output repo specified. Model saved locally to ./image-classifier-output")
        print("To push to Hub, run with: --output-repo your-username/model-name --push-to-hub")
    return


@app.cell
def _(mo):
    mo.md("""
    ## Next Steps

    ### Try different datasets
    - `food101` - 101 food categories (75k train images)
    - `cifar10` - 10 classes of objects (50k train images)
    - `oxford_flowers102` - 102 flower species
    - `fashion_mnist` - Clothing items (grayscale)

    ### Try different models
    - `microsoft/resnet-50` - Classic CNN architecture
    - `facebook/deit-base-patch16-224` - Data-efficient ViT
    - `google/vit-large-patch16-224` - Larger ViT (needs more VRAM)

    ### Scale up with HF Jobs

    ```bash
    # Train on food101 with more epochs
    hf jobs uv run --flavor l4x1 --secrets HF_TOKEN \\
        https://huggingface.co/datasets/uv-scripts/marimo/raw/main/train-image-classifier.py \\
        -- --dataset food101 --epochs 10 --batch-size 32 \\
        --output-repo your-username/food101-vit --push-to-hub
    ```

    **More UV scripts**: [huggingface.co/uv-scripts](https://huggingface.co/uv-scripts)
    """)
    return


if __name__ == "__main__":
    app.run()