File size: 11,681 Bytes
52de1e3
 
 
 
 
011bc8a
52de1e3
011bc8a
52de1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
011bc8a
52de1e3
 
011bc8a
52de1e3
 
 
011bc8a
 
 
 
52de1e3
 
 
011bc8a
 
 
 
 
52de1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c4f2fd
52de1e3
 
 
 
 
 
5c4f2fd
 
011bc8a
 
52de1e3
 
011bc8a
 
52de1e3
 
 
 
011bc8a
52de1e3
011bc8a
52de1e3
011bc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52de1e3
 
 
 
5c4f2fd
52de1e3
 
 
 
 
 
 
 
 
5c4f2fd
52de1e3
 
 
 
 
011bc8a
 
52de1e3
 
 
5c4f2fd
52de1e3
 
 
 
 
 
 
 
 
011bc8a
 
 
 
 
 
 
 
 
 
 
52de1e3
011bc8a
52de1e3
011bc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52de1e3
 
 
 
5c4f2fd
52de1e3
 
 
 
011bc8a
52de1e3
 
 
 
 
 
 
 
 
 
011bc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52de1e3
 
5c4f2fd
52de1e3
 
 
 
 
 
 
 
 
011bc8a
52de1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c4f2fd
52de1e3
 
011bc8a
52de1e3
 
 
011bc8a
 
52de1e3
 
 
011bc8a
52de1e3
 
 
 
5c4f2fd
52de1e3
5c4f2fd
52de1e3
 
 
 
 
5c4f2fd
52de1e3
 
 
 
5c4f2fd
52de1e3
 
 
 
 
5c4f2fd
52de1e3
 
 
 
 
 
5c4f2fd
52de1e3
5c4f2fd
52de1e3
 
 
 
011bc8a
5c4f2fd
011bc8a
5c4f2fd
011bc8a
 
 
 
5c4f2fd
011bc8a
 
 
5c4f2fd
011bc8a
 
 
 
 
 
 
5c4f2fd
 
52de1e3
 
5c4f2fd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
---
viewer: false
tags: [uv-script, classification, vllm, structured-outputs, gpu-required]
---

# Dataset Classification Script

GPU-accelerated text classification for Hugging Face datasets with guaranteed valid outputs through structured generation.

## πŸš€ Quick Start

```bash
# Classify IMDB reviews
uv run classify-dataset.py \
  --input-dataset stanfordnlp/imdb \
  --column text \
  --labels "positive,negative" \
  --output-dataset user/imdb-classified
```

That's it! No installation, no setup - just `uv run`.

## πŸ“‹ Requirements

- **GPU Required**: Uses GPU-accelerated inference
- Python 3.10+
- UV (will handle all dependencies automatically)
- vLLM >= 0.6.6

## 🎯 Features

- **Guaranteed valid outputs** using structured generation with guided decoding
- **Zero-shot classification** without training data required
- **GPU-optimized** for maximum throughput and efficiency
- **Default model**: HuggingFaceTB/SmolLM3-3B (fast 3B model with thinking capabilities)
- **Robust text handling** with preprocessing and validation
- **Automatic progress tracking** and detailed statistics
- **Direct Hub integration** - read and write datasets seamlessly
- **Label descriptions** support for providing context to improve accuracy
- **Reasoning mode** for interpretable classifications with thinking traces
- **JSON output parsing** for reliable extraction from reasoning mode
- **Optimized batching** with vLLM's automatic batch processing
- **Multiple guided backends** - supports outlines, xgrammar, and more

## πŸ’» Usage

### Basic Classification

```bash
uv run classify-dataset.py \
  --input-dataset <dataset-id> \
  --column <text-column> \
  --labels <comma-separated-labels> \
  --output-dataset <output-id>
```

### Arguments

**Required:**

- `--input-dataset`: Hugging Face dataset ID (e.g., `stanfordnlp/imdb`, `user/my-dataset`)
- `--column`: Name of the text column to classify
- `--labels`: Comma-separated classification labels (e.g., `"spam,ham"`)
- `--output-dataset`: Where to save the classified dataset

**Optional:**

- `--model`: Model to use (default: **`HuggingFaceTB/SmolLM3-3B`** - a fast 3B parameter model)
- `--label-descriptions`: Provide descriptions for each label to improve classification accuracy
- `--enable-reasoning`: Enable reasoning mode with thinking traces (adds reasoning column)
- `--split`: Dataset split to process (default: `train`)
- `--max-samples`: Limit samples for testing
- `--shuffle`: Shuffle dataset before selecting samples (useful for random sampling)
- `--shuffle-seed`: Random seed for shuffling (default: 42)
- `--temperature`: Generation temperature (default: 0.1)
- `--guided-backend`: Backend for guided decoding (default: `outlines`)
- `--hf-token`: Hugging Face token (or use `HF_TOKEN` env var)

### Label Descriptions

Provide context for your labels to improve classification accuracy:

```bash
uv run classify-dataset.py \
  --input-dataset user/support-tickets \
  --column content \
  --labels "bug,feature,question,other" \
  --label-descriptions "bug:something is broken,feature:request for new functionality,question:asking for help,other:anything else" \
  --output-dataset user/tickets-classified
```

The model uses these descriptions to better understand what each label represents, leading to more accurate classifications.

### Reasoning Mode

Enable thinking traces for interpretable classifications:

```bash
uv run classify-dataset.py \
  --input-dataset stanfordnlp/imdb \
  --column text \
  --labels "positive,negative,neutral" \
  --enable-reasoning \
  --output-dataset user/imdb-with-reasoning
```

When `--enable-reasoning` is used:
- The model generates step-by-step reasoning using SmolLM3's thinking capabilities
- Output includes three columns: `classification`, `reasoning`, and `parsing_success`
- Final answer must be in JSON format: `{"label": "chosen_label"}`
- Useful for understanding complex classification decisions
- Trade-off: Slower but more interpretable

## πŸ“Š Examples

### Sentiment Analysis

```bash
uv run classify-dataset.py \
  --input-dataset stanfordnlp/imdb \
  --column text \
  --labels "positive,negative" \
  --output-dataset user/imdb-sentiment
```

### Support Ticket Classification

```bash
uv run classify-dataset.py \
  --input-dataset user/support-tickets \
  --column content \
  --labels "bug,feature_request,question,other" \
  --label-descriptions "bug:code or product not working as expected,feature_request:asking for new functionality,question:seeking help or clarification,other:general comments or feedback" \
  --output-dataset user/tickets-classified
```

### News Categorization

```bash
uv run classify-dataset.py \
  --input-dataset ag_news \
  --column text \
  --labels "world,sports,business,tech" \
  --output-dataset user/ag-news-categorized \
  --model meta-llama/Llama-3.2-3B-Instruct
```

### Complex Classification with Reasoning

```bash
uv run classify-dataset.py \
  --input-dataset user/customer-feedback \
  --column text \
  --labels "very_positive,positive,neutral,negative,very_negative" \
  --label-descriptions "very_positive:extremely satisfied,positive:generally satisfied,neutral:mixed feelings,negative:dissatisfied,very_negative:extremely dissatisfied" \
  --enable-reasoning \
  --output-dataset user/feedback-analyzed
```

This combines label descriptions with reasoning mode for maximum interpretability.

### ArXiv ML Research Classification

Classify academic papers into machine learning research areas:

```bash
# Fast classification with random sampling
uv run classify-dataset.py \
  --input-dataset librarian-bots/arxiv-metadata-snapshot \
  --column abstract \
  --labels "llm,computer_vision,reinforcement_learning,optimization,theory,other" \
  --label-descriptions "llm:language models and NLP,computer_vision:image and video processing,reinforcement_learning:RL and decision making,optimization:training and efficiency,theory:theoretical ML foundations,other:other ML topics" \
  --output-dataset user/arxiv-ml-classified \
  --split "train[:10000]" \
  --max-samples 100 \
  --shuffle

# With reasoning for nuanced classification
uv run classify-dataset.py \
  --input-dataset librarian-bots/arxiv-metadata-snapshot \
  --column abstract \
  --labels "multimodal,agents,reasoning,safety,efficiency" \
  --label-descriptions "multimodal:vision-language and cross-modal models,agents:autonomous agents and tool use,reasoning:reasoning and planning systems,safety:alignment and safety research,efficiency:model optimization and deployment" \
  --enable-reasoning \
  --output-dataset user/arxiv-frontier-research \
  --split "train[:1000]" \
  --max-samples 50
```

The reasoning mode is particularly valuable for academic abstracts where papers often span multiple topics and require careful analysis to determine the primary focus.

## πŸš€ Running on HF Jobs

Optimized for [Hugging Face Jobs](https://huggingface.co/docs/hub/spaces-gpu-jobs) (requires Pro subscription or Team/Enterprise organization):
```bash
# Run on L4 GPU with vLLM image
hf jobs uv run \
  --flavor l4x1 \
  --image vllm/vllm-openai:latest \
  https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset.py \
  --input-dataset stanfordnlp/imdb \
  --column text \
  --labels "positive,negative" \
  --output-dataset user/imdb-classified
```

### GPU Flavors
- `t4-small`: Budget option for smaller models
- `l4x1`: Good balance for 7B models
- `a10g-small`: Fast inference for 3B models
- `a10g-large`: More memory for larger models
- `a100-large`: Maximum performance

## πŸ”§ Advanced Usage

### Random Sampling

When working with ordered datasets, use `--shuffle` with `--max-samples` to get a representative sample:

```bash
# Get 50 random reviews instead of the first 50
uv run classify-dataset.py \
  --input-dataset stanfordnlp/imdb \
  --column text \
  --labels "positive,negative" \
  --output-dataset user/imdb-sample \
  --max-samples 50 \
  --shuffle \
  --shuffle-seed 123  # For reproducibility
```

This is especially important for:
- Chronologically ordered datasets (news, papers, social media)
- Pre-sorted datasets (by rating, category, etc.)
- Testing on diverse samples before processing the full dataset

### Using Different Models

By default, this script uses **HuggingFaceTB/SmolLM3-3B** - a fast, efficient 3B parameter model that's perfect for most classification tasks. You can easily use any other instruction-tuned model:

```bash
# Larger model for complex classification
uv run classify-dataset.py \
  --input-dataset user/legal-docs \
  --column text \
  --labels "contract,patent,brief,memo,other" \
  --output-dataset user/legal-classified \
  --model Qwen/Qwen2.5-7B-Instruct
```

### Large Datasets

vLLM automatically handles batching for optimal performance. For very large datasets, it will process efficiently without manual intervention:

```bash
uv run classify-dataset.py \
  --input-dataset user/huge-dataset \
  --column text \
  --labels "A,B,C" \
  --output-dataset user/huge-classified
```

## πŸ“ˆ Performance

- **SmolLM3-3B (default)**: ~50-100 texts/second on A10
- **7B models**: ~20-50 texts/second on A10
- vLLM automatically optimizes batching for best throughput
- Performance scales with GPU memory and compute capability

## 🀝 How It Works

1. **vLLM**: Provides efficient GPU batch inference with automatic batching
2. **Guided Decoding**: Uses outlines backend to guarantee valid label outputs
3. **Structured Generation**: Constrains model outputs to exact label choices
4. **UV**: Handles all dependencies automatically

The script loads your dataset, preprocesses texts, classifies each one with guaranteed valid outputs, then saves the results as a new column in the output dataset.

## πŸ› Troubleshooting

### CUDA Not Available

This script requires a GPU. Run it on:

- A machine with NVIDIA GPU
- HF Jobs (recommended)
- Cloud GPU instances

### Out of Memory

- Use a smaller model
- Use a larger GPU (e.g., a100-large)

### Invalid/Skipped Texts

- Texts shorter than 3 characters are skipped
- Empty or None values are marked as invalid
- Very long texts are truncated to 4000 characters

### Classification Quality

- With guided decoding, outputs are guaranteed to be valid labels
- For better results, use clear and distinct label names
- Try the `reasoning` prompt style for complex classifications
- Use a larger model for nuanced tasks

### vLLM Version Issues

If you see `ImportError: cannot import name 'GuidedDecodingParams'`:

- Your vLLM version is too old (requires >= 0.6.6)
- The script specifies the correct version in its dependencies
- UV should automatically install the correct version

## πŸ”¬ Advanced Workflows

For complex real-world workflows that integrate UV scripts with the Python HF Jobs API, see the [ArXiv ML Trends example](examples/arxiv-workflow/). This demonstrates:

- **Multi-stage pipelines**: Data preparation β†’ GPU classification β†’ Analysis
- **Python API orchestration**: Using `run_uv_job()` to manage GPU jobs programmatically
- **Production patterns**: Error handling, parallel execution, and incremental updates
- **Cost optimization**: Choosing appropriate compute resources for each task

```python
# Example: Submit a classification job via Python API
from huggingface_hub import run_uv_job

job = run_uv_job(
    script="https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset.py",
    args=["--input-dataset", "my/dataset", "--labels", "A,B,C"],
    flavor="l4x1",
    image="vllm/vllm-openai:latest"
)
result = job.wait()
```

## πŸ“ License

This script is provided as-is for use with the UV Scripts organization.