Datasets:

ArXiv:
File size: 17,207 Bytes
c6346bb
 
 
 
 
 
75b0fc2
c6346bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3f7bba
7395ac7
6b6ce01
 
7395ac7
3f2aaa8
914cd5a
1f01930
914cd5a
7395ac7
914cd5a
3f2aaa8
6b6ce01
b0c34ba
572dea1
1f01930
b0c34ba
6b6ce01
572dea1
 
914cd5a
 
b3f7bba
 
 
 
3f2aaa8
c6346bb
b3f7bba
dac0ace
914cd5a
0113a7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
914cd5a
 
 
 
 
b3f7bba
 
 
 
0113a7a
3f2aaa8
0113a7a
3f2aaa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
914cd5a
0113a7a
 
6b6ce01
dac0ace
 
 
 
 
 
 
 
 
 
 
 
 
 
75b0fc2
dac0ace
0113a7a
3f2aaa8
 
 
b3f7bba
 
0113a7a
 
 
 
 
 
 
 
 
6b6ce01
572dea1
 
 
 
 
 
 
 
 
 
936be43
572dea1
 
 
 
75b0fc2
572dea1
3f2aaa8
 
 
 
b3f7bba
 
 
 
 
914cd5a
0113a7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
914cd5a
7395ac7
 
1f01930
 
 
0113a7a
06c113f
0113a7a
06c113f
1f01930
dac0ace
0113a7a
 
 
 
 
 
 
06c113f
0113a7a
 
 
1f01930
0113a7a
 
 
 
 
 
06c113f
 
 
0113a7a
 
 
 
1f01930
 
dac0ace
 
 
 
 
 
 
 
1f01930
b3f7bba
0113a7a
b3f7bba
 
1f01930
 
 
06c113f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b6ce01
 
 
 
 
 
3f2aaa8
6b6ce01
 
 
 
 
 
 
 
dac0ace
 
 
6b6ce01
 
 
 
 
 
 
 
 
 
 
 
 
 
7395ac7
 
 
 
 
b3f7bba
6b6ce01
 
 
 
 
 
 
3f2aaa8
7395ac7
 
6b6ce01
7395ac7
 
 
b3f7bba
7395ac7
b3f7bba
 
 
 
0113a7a
b3f7bba
 
0113a7a
b3f7bba
 
 
 
 
6b6ce01
0113a7a
b3f7bba
 
7395ac7
 
 
 
 
 
 
b3f7bba
 
 
6b6ce01
7395ac7
b3f7bba
 
 
7395ac7
 
 
 
 
 
6b6ce01
 
 
 
 
7395ac7
 
 
b3f7bba
 
 
7395ac7
b3f7bba
 
7395ac7
 
 
dac0ace
 
7395ac7
 
3f2aaa8
 
7395ac7
 
 
 
 
 
c362437
 
 
06c113f
0113a7a
c362437
6b6ce01
 
 
 
 
 
 
 
 
 
 
 
b3f7bba
 
 
 
 
 
 
572dea1
 
 
 
 
 
 
 
 
 
 
 
6b6ce01
 
 
 
 
 
 
7395ac7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
"""This section describes unitxt loaders.

Loaders: Generators of Unitxt Multistreams from existing date sources
==============================================================

Unitxt is all about readily preparing of any given data source for feeding into any given language model, and then,
post-processing the model's output, preparing it for any given evaluator.

Through that journey, the data advances in the form of Unitxt Multistream, undergoing a sequential application
of various off the shelf operators (i.e, picked from Unitxt catalog), or operators easily implemented by inheriting.
The journey starts by a Unitxt Loeader bearing a Multistream from the given datasource.
A loader, therefore, is the first item on any Unitxt Recipe.

Unitxt catalog contains several loaders for the most popular datasource formats.
All these loaders inherit from Loader, and hence, implementing a loader to expand over a new type of datasource, is
straight forward.

Operators in Unitxt catalog:
LoadHF : loads from Huggingface dataset.
LoadCSV: loads from csv (comma separated value) files
LoadFromKaggle: loads datasets from the kaggle.com community site
LoadFromIBMCloud: loads a dataset from the IBM cloud.
------------------------
"""
import itertools
import os
import tempfile
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Dict, List, Mapping, Optional, Sequence, Union

import pandas as pd
from datasets import load_dataset as hf_load_dataset
from tqdm import tqdm

from .dataclass import InternalField, OptionalField
from .logging_utils import get_logger
from .operator import SourceOperator
from .settings_utils import get_settings
from .stream import MultiStream, Stream

logger = get_logger()
settings = get_settings()


class Loader(SourceOperator):
    # The loader_limit an optional parameter used to control the maximum number of instances to load from the the source.
    # It is usually provided to the loader via the recipe (see standard.py)
    # The loader can use this value to limit the amount of data downloaded from the source
    # to reduce loading time.  However, this may not always be possible, so the
    # loader may ignore this.  In any case, the recipe, will limit the number of instances in the returned
    # stream, after load is complete.
    loader_limit: int = None
    streaming: bool = False

    def get_limit(self):
        if settings.global_loader_limit is not None and self.loader_limit is not None:
            return min(int(settings.global_loader_limit), self.loader_limit)
        if settings.global_loader_limit is not None:
            return int(settings.global_loader_limit)
        return self.loader_limit

    def get_limiter(self):
        if settings.global_loader_limit is not None and self.loader_limit is not None:
            if int(settings.global_loader_limit) > self.loader_limit:
                return f"{self.__class__.__name__}.loader_limit"
            return "unitxt.settings.global_loader_limit"
        if settings.global_loader_limit is not None:
            return "unitxt.settings.global_loader_limit"
        return f"{self.__class__.__name__}.loader_limit"

    def log_limited_loading(self):
        logger.info(
            f"\nLoading limited to {self.get_limit()} instances by setting {self.get_limiter()};"
        )


class LoadHF(Loader):
    path: str
    name: Optional[str] = None
    data_dir: Optional[str] = None
    split: Optional[str] = None
    data_files: Optional[
        Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
    ] = None
    streaming: bool = True
    filtering_lambda: Optional[str] = None
    _cache: dict = InternalField(default=None)
    requirements_list: List[str] = OptionalField(default_factory=list)

    def verify(self):
        for requirement in self.requirements_list:
            if requirement not in self._requirements_list:
                self._requirements_list.append(requirement)
        super().verify()

    def filtered_load(self, dataset):
        logger.info(f"\nLoading filtered by: {self.filtering_lambda};")
        return MultiStream(
            {
                name: dataset[name].filter(eval(self.filtering_lambda))
                for name in dataset
            }
        )

    def stream_dataset(self):
        if self._cache is None:
            with tempfile.TemporaryDirectory() as dir_to_be_deleted:
                try:
                    dataset = hf_load_dataset(
                        self.path,
                        name=self.name,
                        data_dir=self.data_dir,
                        data_files=self.data_files,
                        streaming=self.streaming,
                        cache_dir=None if self.streaming else dir_to_be_deleted,
                        split=self.split,
                        trust_remote_code=settings.allow_unverified_code,
                    )
                except ValueError as e:
                    if "trust_remote_code" in str(e):
                        raise ValueError(
                            f"{self.__class__.__name__} cannot run remote code from huggingface without setting unitxt.settings.allow_unverified_code=True or by setting environment variable: UNITXT_ALLOW_UNVERIFIED_CODE."
                        ) from e

            if self.filtering_lambda is not None:
                dataset = self.filtered_load(dataset)

            if self.split is not None:
                dataset = {self.split: dataset}

            self._cache = dataset
        else:
            dataset = self._cache

        return dataset

    def load_dataset(self):
        if self._cache is None:
            with tempfile.TemporaryDirectory() as dir_to_be_deleted:
                try:
                    dataset = hf_load_dataset(
                        self.path,
                        name=self.name,
                        data_dir=self.data_dir,
                        data_files=self.data_files,
                        streaming=False,
                        keep_in_memory=True,
                        cache_dir=dir_to_be_deleted,
                        split=self.split,
                        trust_remote_code=settings.allow_unverified_code,
                    )
                except ValueError as e:
                    if "trust_remote_code" in str(e):
                        raise ValueError(
                            f"{self.__class__.__name__} cannot run remote code from huggingface without setting unitxt.settings.allow_unverified_code=True or by setting environment variable: UNITXT_ALLOW_UNVERIFIED_CODE."
                        ) from e

            if self.filtering_lambda is not None:
                dataset = self.filtered_load(dataset)

            if self.split is None:
                for split in dataset.keys():
                    dataset[split] = dataset[split].to_iterable_dataset()
            else:
                dataset = {self.split: dataset}

            self._cache = dataset
        else:
            dataset = self._cache

        return dataset

    def split_limited_load(self, split_name):
        yield from itertools.islice(self._cache[split_name], self.get_limit())

    def limited_load(self):
        self.log_limited_loading()
        return MultiStream(
            {
                name: Stream(
                    generator=self.split_limited_load, gen_kwargs={"split_name": name}
                )
                for name in self._cache.keys()
            }
        )

    def process(self):
        try:
            dataset = self.stream_dataset()
        except (
            NotImplementedError
        ):  # streaming is not supported for zipped files so we load without streaming
            dataset = self.load_dataset()

        if self.get_limit() is not None:
            return self.limited_load()

        return MultiStream.from_iterables(dataset)


class LoadCSV(Loader):
    files: Dict[str, str]
    chunksize: int = 1000
    _cache = InternalField(default_factory=dict)
    loader_limit: Optional[int] = None
    streaming: bool = True
    sep: str = ","

    def stream_csv(self, file):
        if self.get_limit() is not None:
            self.log_limited_loading()
            chunksize = min(self.get_limit(), self.chunksize)
        else:
            chunksize = self.chunksize

        row_count = 0
        for chunk in pd.read_csv(file, chunksize=chunksize, sep=self.sep):
            for _, row in chunk.iterrows():
                if self.get_limit() is not None and row_count >= self.get_limit():
                    return
                yield row.to_dict()
                row_count += 1

    def load_csv(self, file):
        if file not in self._cache:
            if self.get_limit() is not None:
                self.log_limited_loading()
                self._cache[file] = pd.read_csv(
                    file, nrows=self.get_limit(), sep=self.sep
                ).to_dict("records")
            else:
                self._cache[file] = pd.read_csv(file).to_dict("records")

        yield from self._cache[file]

    def process(self):
        if self.streaming:
            return MultiStream(
                {
                    name: Stream(generator=self.stream_csv, gen_kwargs={"file": file})
                    for name, file in self.files.items()
                }
            )

        return MultiStream(
            {
                name: Stream(generator=self.load_csv, gen_kwargs={"file": file})
                for name, file in self.files.items()
            }
        )


class LoadFromSklearn(Loader):
    dataset_name: str
    splits: List[str] = ["train", "test"]

    _requirements_list: List[str] = ["sklearn", "pandas"]

    def verify(self):
        super().verify()

        if self.streaming:
            raise NotImplementedError("LoadFromSklearn cannot load with streaming.")

    def prepare(self):
        super().prepare()
        from sklearn import datasets as sklearn_datatasets

        self.downloader = getattr(sklearn_datatasets, f"fetch_{self.dataset_name}")

    def process(self):
        with TemporaryDirectory() as temp_directory:
            for split in self.splits:
                split_data = self.downloader(subset=split)
                targets = [split_data["target_names"][t] for t in split_data["target"]]
                df = pd.DataFrame([split_data["data"], targets]).T
                df.columns = ["data", "target"]
                df.to_csv(os.path.join(temp_directory, f"{split}.csv"), index=None)
            dataset = hf_load_dataset(temp_directory, streaming=False)

        return MultiStream.from_iterables(dataset)


class MissingKaggleCredentialsError(ValueError):
    pass


class LoadFromKaggle(Loader):
    url: str
    _requirements_list: List[str] = ["opendatasets"]

    def verify(self):
        super().verify()
        if not os.path.isfile("kaggle.json"):
            raise MissingKaggleCredentialsError(
                "Please obtain kaggle credentials https://christianjmills.com/posts/kaggle-obtain-api-key-tutorial/ and save them to local ./kaggle.json file"
            )

        if self.streaming:
            raise NotImplementedError("LoadFromKaggle cannot load with streaming.")

    def prepare(self):
        super().prepare()
        from opendatasets import download

        self.downloader = download

    def process(self):
        with TemporaryDirectory() as temp_directory:
            self.downloader(self.url, temp_directory)
            dataset = hf_load_dataset(temp_directory, streaming=False)

        return MultiStream.from_iterables(dataset)


class LoadFromIBMCloud(Loader):
    endpoint_url_env: str
    aws_access_key_id_env: str
    aws_secret_access_key_env: str
    bucket_name: str
    data_dir: str = None

    # Can be either:
    # 1. a list of file names, the split of each file is determined by the file name pattern
    # 2. Mapping: split -> file_name, e.g. {"test" : "test.json", "train": "train.json"}
    # 3. Mapping: split -> file_names, e.g. {"test" : ["test1.json", "test2.json"], "train": ["train.json"]}
    data_files: Union[Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
    caching: bool = True
    _requirements_list: List[str] = ["ibm_boto3"]

    def _download_from_cos(self, cos, bucket_name, item_name, local_file):
        logger.info(f"Downloading {item_name} from {bucket_name} COS")
        try:
            response = cos.Object(bucket_name, item_name).get()
            size = response["ContentLength"]
            body = response["Body"]
        except Exception as e:
            raise Exception(
                f"Unabled to access {item_name} in {bucket_name} in COS", e
            ) from e

        if self.get_limit() is not None:
            if item_name.endswith(".jsonl"):
                first_lines = list(
                    itertools.islice(body.iter_lines(), self.get_limit())
                )
                with open(local_file, "wb") as downloaded_file:
                    for line in first_lines:
                        downloaded_file.write(line)
                        downloaded_file.write(b"\n")
                logger.info(
                    f"\nDownload successful limited to {self.get_limit()} lines"
                )
                return

        progress_bar = tqdm(total=size, unit="iB", unit_scale=True)

        def upload_progress(chunk):
            progress_bar.update(chunk)

        try:
            cos.Bucket(bucket_name).download_file(
                item_name, local_file, Callback=upload_progress
            )
            logger.info("\nDownload Successful")
        except Exception as e:
            raise Exception(
                f"Unabled to download {item_name} in {bucket_name}", e
            ) from e

    def prepare(self):
        super().prepare()
        self.endpoint_url = os.getenv(self.endpoint_url_env)
        self.aws_access_key_id = os.getenv(self.aws_access_key_id_env)
        self.aws_secret_access_key = os.getenv(self.aws_secret_access_key_env)
        root_dir = os.getenv("UNITXT_IBM_COS_CACHE", None) or os.getcwd()
        self.cache_dir = os.path.join(root_dir, "ibmcos_datasets")

        if not os.path.exists(self.cache_dir):
            Path(self.cache_dir).mkdir(parents=True, exist_ok=True)

    def verify(self):
        super().verify()
        assert (
            self.endpoint_url is not None
        ), f"Please set the {self.endpoint_url_env} environmental variable"
        assert (
            self.aws_access_key_id is not None
        ), f"Please set {self.aws_access_key_id_env} environmental variable"
        assert (
            self.aws_secret_access_key is not None
        ), f"Please set {self.aws_secret_access_key_env} environmental variable"
        if self.streaming:
            raise NotImplementedError("LoadFromKaggle cannot load with streaming.")

    def process(self):
        import ibm_boto3

        cos = ibm_boto3.resource(
            "s3",
            aws_access_key_id=self.aws_access_key_id,
            aws_secret_access_key=self.aws_secret_access_key,
            endpoint_url=self.endpoint_url,
        )
        local_dir = os.path.join(
            self.cache_dir,
            self.bucket_name,
            self.data_dir or "",  # data_dir can be None
            f"loader_limit_{self.get_limit()}",
        )
        if not os.path.exists(local_dir):
            Path(local_dir).mkdir(parents=True, exist_ok=True)
        if isinstance(self.data_files, Mapping):
            data_files_names = list(self.data_files.values())
            if not isinstance(data_files_names[0], str):
                data_files_names = list(itertools.chain(*data_files_names))
        else:
            data_files_names = self.data_files

        for data_file in data_files_names:
            local_file = os.path.join(local_dir, data_file)
            if not self.caching or not os.path.exists(local_file):
                # Build object key based on parameters. Slash character is not
                # allowed to be part of object key in IBM COS.
                object_key = (
                    self.data_dir + "/" + data_file
                    if self.data_dir is not None
                    else data_file
                )
                with tempfile.NamedTemporaryFile() as temp_file:
                    # Download to  a temporary file in same file partition, and then do an atomic move
                    self._download_from_cos(
                        cos,
                        self.bucket_name,
                        object_key,
                        local_dir + "/" + os.path.basename(temp_file.name),
                    )
                    os.rename(
                        local_dir + "/" + os.path.basename(temp_file.name),
                        local_dir + "/" + data_file,
                    )

        if isinstance(self.data_files, list):
            dataset = hf_load_dataset(local_dir, streaming=False)
        else:
            dataset = hf_load_dataset(
                local_dir, streaming=False, data_files=self.data_files
            )

        return MultiStream.from_iterables(dataset)