File size: 43,578 Bytes
8559937 175a9b7 fa70f1c 8559937 300113f 175a9b7 7d7cc9e fa70f1c 8559937 fa70f1c 8559937 175a9b7 fa70f1c 8559937 fa70f1c 8559937 7d7cc9e 230105d 7d7cc9e 230105d 7d7cc9e 8559937 7d7cc9e fa70f1c 5218ddd 8559937 7d7cc9e 8559937 7d7cc9e 8559937 7d7cc9e 8559937 7d7cc9e 8559937 4ebbd89 8559937 4ebbd89 7254de6 8559937 4ebbd89 7d7cc9e 8559937 7d7cc9e 8559937 7d7cc9e 8559937 7d7cc9e 7254de6 7d7cc9e 8559937 7d7cc9e 8559937 175a9b7 8559937 175a9b7 8559937 175a9b7 8559937 175a9b7 8559937 175a9b7 8559937 175a9b7 8559937 175a9b7 8559937 175a9b7 8559937 7d7cc9e 8559937 7d7cc9e 8559937 7d7cc9e 8559937 7d7cc9e 8559937 7254de6 7d7cc9e 8559937 7d7cc9e 8559937 7d7cc9e fa70f1c 8559937 fa70f1c 8559937 fa70f1c 8559937 fa70f1c 8559937 7d7cc9e 8559937 7d7cc9e 8559937 fa70f1c 8559937 fa70f1c 8559937 fa70f1c 175a9b7 8559937 175a9b7 fa70f1c 8559937 fa70f1c 8559937 175a9b7 fa70f1c 8559937 175a9b7 8559937 175a9b7 8559937 fa70f1c 175a9b7 8559937 175a9b7 fa70f1c 8559937 fa70f1c 8559937 fa70f1c 230105d fa70f1c 8559937 fa70f1c 8559937 fa70f1c 8559937 fa70f1c 7254de6 fa70f1c 8559937 fa70f1c 8559937 fa70f1c 8559937 fa70f1c 230105d 8559937 230105d 8559937 7254de6 8559937 7254de6 fa70f1c 8559937 7254de6 fa70f1c 7254de6 fa70f1c 7254de6 fa70f1c 175a9b7 fa70f1c fac79d6 7254de6 8559937 7254de6 8559937 fac79d6 8559937 230105d 7254de6 8559937 7254de6 8559937 7254de6 8559937 230105d 8559937 7254de6 230105d 175a9b7 230105d 8559937 230105d 8559937 230105d 4ebbd89 175a9b7 4ebbd89 8559937 4ebbd89 300113f 4ebbd89 8559937 300113f 8559937 300113f 8559937 300113f 8559937 300113f 8559937 300113f 8559937 300113f 8559937 300113f 4ebbd89 8559937 4ebbd89 8559937 300113f 8559937 300113f 4ebbd89 300113f 8559937 300113f 8559937 4ebbd89 8559937 4ebbd89 8559937 300113f 8559937 300113f 8559937 300113f 4ebbd89 8559937 300113f 175a9b7 8559937 175a9b7 8559937 175a9b7 8559937 175a9b7 8559937 175a9b7 8559937 175a9b7 8559937 175a9b7 8559937 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 |
import logging
import re
import string
import uuid
from abc import abstractmethod
from collections import Counter
from dataclasses import field
from typing import Any, Dict, Generator, List, Optional, Tuple
import evaluate
import numpy
import numpy as np
from scipy.stats import bootstrap
from .artifact import Artifact
from .dataclass import InternalField, OptionalField
from .operator import (
MultiStreamOperator,
SingleStreamOperator,
StreamingOperator,
StreamInstanceOperator,
)
from .operators import CopyFields
from .random_utils import get_seed
from .stream import MultiStream, Stream
# The default number of resamples used to estimate the confidence intervals
# global and instances metrics. Use None to disable confidence interval computation by default.
_N_RESAMPLES_DEFAULT_FOR_INSTANCE_METRICS = 1000
_N_RESAMPLES_DEFAULT_FOR_GLOBAL_METRICS = 100
def abstract_factory():
return {}
def abstract_field():
return field(default_factory=abstract_factory)
class UpdateStream(StreamInstanceOperator):
update: dict
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
instance.update(self.update)
return instance
# TODO: currently we have two classes with this name. metric.Metric and matrics.Metric...
class Metric(Artifact):
@property
@abstractmethod
def main_score(self):
pass
class MetricWithConfidenceInterval(Metric):
# The number of resamples used to estimate the confidence intervals of this metric.
# Use None to disable confidence interval computation.
n_resamples: int = None
confidence_level: float = 0.95
@staticmethod
def new_random_generator():
# The np.random.default_rng expects a 32-bit int, while hash(..) can return a 64-bit integer.
# So use '& MAX_32BIT' to get a 32-bit seed.
_max_32bit = 2**32 - 1
return np.random.default_rng(hash(get_seed()) & _max_32bit)
def disable_confidence_interval_calculation(self):
self.n_resamples = None
def _can_compute_confidence_intervals(self, num_predictions):
return (
self.n_resamples is not None
and self.n_resamples > 1
and num_predictions > 1
)
def score_based_confidence_interval(self, score_names: List[str], instances):
"""Compute confidence intervals based on existing scores, already computed on the input instances.
score_names: List[str]
Compute a confidence interval for each score_name from this list.
instances:
The instances for which the confidence intervals are computed.
"""
from statistics import mean
result = {}
if not self._can_compute_confidence_intervals(num_predictions=len(instances)):
return result
for score_name in score_names:
scores = [
instance["score"]["instance"][score_name] for instance in instances
]
ci = bootstrap(
(scores,),
statistic=mean,
n_resamples=self.n_resamples,
confidence_level=self.confidence_level,
random_state=self.new_random_generator(),
).confidence_interval
result[f"{score_name}_ci_low"] = ci.low
result[f"{score_name}_ci_high"] = ci.high
if score_name == self.main_score:
result["score_ci_low"] = ci.low
result["score_ci_high"] = ci.high
return result
def compute_global_confidence_intervals(
self, references, predictions, additional_inputs, score_name
):
"""Computed confidence intervals for a set of references and predictions."""
random_gen = self.new_random_generator()
def statistic(arr, axis):
# arr is a 2d array where each row is a resampling, so we
# iterate over the rows and compute the metric on each resampling
def metric(sample_refs, sample_preds, sample_additional_inputs):
try:
return self._compute(
references=sample_refs,
predictions=sample_preds,
additional_inputs=sample_additional_inputs,
)["score"]
except Exception as e:
# this happens in edge cases, for example, when the sampling creates a
# sample where all strings are empty and this fails bleu.
logging.info(f"Warning in {self.__class__.__name__}", e)
return np.nan
scores = numpy.apply_along_axis(
lambda x: metric(
sample_refs=[references[i] for i in x],
sample_preds=[predictions[i] for i in x],
sample_additional_inputs=[additional_inputs[i] for i in x],
),
axis=axis,
arr=arr,
)
# when running with bca interval (default), the statistic is called twice: with the
# original data and with the resamples. here we want to focus only on the latter.
if scores.size > 1:
# here we deal with samples on which the metric could not be computed. These are
# edge cases - for example, when the sample contains only empty strings.
# CI is about the distribution around the statistic (e.g. mean), it doesn't deal with
# cases in which the metric is not computable. Therefore, we ignore these edge cases
# as part of the computation of CI. The question is how to implement this policy.
# Options:
# 1. skip the errors and return a shorter array => this fails because Scipy demans
# this callback (i.e. the statistic() callback) to return an array of the same size
# as the number of resamples
# 2. Put np.nan for the errors => this fails because in such case the ci itself
# becomes np.nan. So one edge case can fail the whole CI computation.
# 3. Replace the errors with a sampling from the successful cases => this is what
# is implemented.
error_indices = numpy.isnan(scores)
n_errors = sum(error_indices)
if n_errors > 0:
new_scores = random_gen.choice(scores, n_errors, replace=True)
scores = scores[~error_indices]
scores = np.concatenate([scores, new_scores])
return scores
result = {}
num_predictions = len(predictions)
if self._can_compute_confidence_intervals(num_predictions=num_predictions):
identifiers = list(range(num_predictions))
ci = bootstrap(
(identifiers,),
statistic=statistic,
n_resamples=self.n_resamples,
confidence_level=self.confidence_level,
random_state=random_gen,
).confidence_interval
result["score_ci_low"] = ci.low
result["score_ci_high"] = ci.high
result[f"{score_name}_ci_low"] = ci.low
result[f"{score_name}_ci_high"] = ci.high
return result
class GlobalMetric(SingleStreamOperator, MetricWithConfidenceInterval):
"""A class for computing metrics that require joint calculations over all instances and are not just aggregation of scores of individuals instances.
For example, macro_F1 requires
calculation requires calculation of recall and precision per class, so all instances of the class
need to be considered. Accuracy, on the other hand, is just an average of the accuracy of all the instances.
"""
n_resamples = _N_RESAMPLES_DEFAULT_FOR_GLOBAL_METRICS
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
references = []
predictions = []
additional_inputs = []
global_score = {}
instances = []
for instance in stream:
if "score" not in instance:
instance["score"] = {"global": global_score, "instance": {}}
else:
global_score = instance["score"]["global"]
instance_references, instance_prediction = (
instance["references"],
instance["prediction"],
)
references.append(instance_references)
predictions.append(instance_prediction)
instances.append(instance)
instance_additional_inputs = (
instance["additional_inputs"] if "additional_inputs" in instance else {}
)
additional_inputs.append(instance_additional_inputs)
try:
instance_score = self._compute(
[instance_references],
[instance_prediction],
[instance_additional_inputs],
)
except:
instance_score = {"score": None, "score_name": self.main_score}
if isinstance(self.main_score, str):
instance_score[self.main_score] = None
instance["score"]["instance"].update(instance_score)
result = self._compute(references, predictions, additional_inputs)
global_score.update(result)
score_name = global_score["score_name"]
confidence_interval = self.compute_global_confidence_intervals(
references, predictions, additional_inputs, score_name
)
global_score.update(confidence_interval)
for instance in instances:
instance["score"]["global"] = global_score
yield instance
def _compute(
self,
references: List[List[str]],
predictions: List[str],
additional_inputs: List[Any],
) -> dict:
result = self.compute(references, predictions, additional_inputs)
result["score"] = result[self.main_score]
result["score_name"] = self.main_score
return result
@abstractmethod
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Any],
) -> dict:
pass
class BulkInstanceMetric(SingleStreamOperator, MetricWithConfidenceInterval):
n_resamples = _N_RESAMPLES_DEFAULT_FOR_INSTANCE_METRICS
main_score: str
reduction_map: Dict[str, List[str]]
implemented_reductions: List[str] = field(default_factory=lambda: ["mean"])
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
global_score = {}
instances = []
# consume the stream
references, predictions = map(
list,
zip(
*[
(instance["references"], instance["prediction"])
for instance in stream
]
),
)
additional_inputs = [
instance["additional_inputs"] if "additional_inputs" in instance else {}
for instance in stream
]
# compute the metric over all refs and preds
instance_scores = self.compute(
references=references,
predictions=predictions,
additional_inputs=additional_inputs,
)
# add the score and score_name fields
for instance_score in instance_scores:
instance_score["score"] = instance_score[self.main_score]
instance_score["score_name"] = self.main_score
for instance, score in zip(stream, instance_scores):
if "score" not in instance:
instance["score"] = {"global": global_score, "instance": {}}
else:
global_score = instance["score"]["global"]
instance["score"]["instance"].update(score)
instances.append(instance)
for reduction, fields in self.reduction_map.items():
assert (
reduction in self.implemented_reductions
), f"Reduction {reduction} is not implemented, use one of {self.implemented_reductions}"
if reduction == "mean":
from statistics import mean
for field_name in fields:
global_score[field_name] = mean(
[
instance["score"]["instance"][field_name]
for instance in instances
]
)
if field_name == self.main_score:
global_score["score"] = global_score[field_name]
global_score["score_name"] = self.main_score
confidence_interval = self.score_based_confidence_interval(
score_names=[self.main_score], instances=instances
)
global_score.update(confidence_interval)
for instance in instances:
yield instance
@abstractmethod
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Dict],
) -> Dict[str, Any]:
pass
class InstanceMetric(SingleStreamOperator, MetricWithConfidenceInterval):
n_resamples = _N_RESAMPLES_DEFAULT_FOR_INSTANCE_METRICS
implemented_reductions: List[str] = field(default_factory=lambda: ["mean"])
@property
@abstractmethod
def reduction_map(self) -> dict:
pass
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
global_score = {}
instances = []
for instance in stream:
refs, pred = instance["references"], instance["prediction"]
additional_inputs = (
instance["additional_inputs"] if "additional_inputs" in instance else {}
)
instance_score = self.compute(
references=refs, prediction=pred, additional_inputs=additional_inputs
)
instance_score["score"] = instance_score[self.main_score]
instance_score["score_name"] = self.main_score
if "score" not in instance:
instance["score"] = {"global": global_score, "instance": {}}
else:
global_score = instance["score"]["global"]
instance["score"]["instance"].update(instance_score)
instances.append(instance)
for reduction, fields in self.reduction_map.items():
assert (
reduction in self.implemented_reductions
), f"Reduction {reduction} is not implemented, use one of {self.implemented_reductions}"
if reduction == "mean":
from statistics import mean
for field_name in fields:
scores = [
instance["score"]["instance"][field_name]
for instance in instances
]
global_score[field_name] = mean(scores)
if field_name == self.main_score:
global_score["score"] = global_score[field_name]
global_score["score_name"] = self.main_score
confidence_interval = self.score_based_confidence_interval(
score_names=[self.main_score], instances=instances
)
global_score.update(confidence_interval)
for instance in instances:
yield instance
@abstractmethod
def compute(
self, references: List[Any], prediction: Any, additional_inputs: Dict
) -> dict:
pass
class Squad(GlobalMetric):
_metric = None
main_score = "f1"
metric = "squad"
def prepare(self):
super().prepare()
self._metric = evaluate.load(self.metric)
def compute(
self,
references: List[List[str]],
predictions: List[str],
additional_inputs: List[Dict],
) -> dict:
ids = [str(uuid.uuid4()).replace("-", "") for _ in range(len(predictions))]
formatted_predictions = [
{"prediction_text": prediction, "id": ids[i]}
for i, prediction in enumerate(predictions)
]
formatted_references = [
{"answers": {"answer_start": [-1], "text": reference}, "id": ids[i]}
for i, reference in enumerate(references)
]
return self._metric.compute(
predictions=formatted_predictions,
references=formatted_references,
)
class Accuracy(InstanceMetric):
reduction_map = {"mean": ["accuracy"]}
main_score = "accuracy"
def compute(
self, references: List[Any], prediction: Any, additional_inputs: List[Dict]
) -> dict:
result = {
self.main_score: float(
str(prediction) in [str(reference) for reference in references]
)
}
result["score"] = result[self.main_score]
result["score_name"] = self.main_score
return result
class MetricPipeline(MultiStreamOperator, Metric):
main_score: str = None
preprocess_steps: Optional[List[StreamingOperator]] = field(default_factory=list)
postpreprocess_steps: Optional[List[StreamingOperator]] = field(
default_factory=list
)
metric: Metric = None
def verify(self):
assert self.main_score is not None, "main_score is not set"
def prepare(self):
super().prepare()
self.prepare_score = CopyFields(
field_to_field=[
[f"score/instance/{self.main_score}", "score/instance/score"],
[f"score/global/{self.main_score}", "score/global/score"],
],
use_query=True,
)
def process(self, multi_stream: MultiStream) -> MultiStream:
for step in self.preprocess_steps:
multi_stream = step(multi_stream)
multi_stream = self.metric(multi_stream)
for step in self.postpreprocess_steps:
multi_stream = step(multi_stream)
return self.prepare_score(multi_stream)
class HuggingfaceMetric(GlobalMetric):
hf_metric_name: str = None
main_score: str = None # The main score returned from the metric
hf_main_score: str = (
None # USed if HF returns uses a different score name for the main metric
)
scale: float = 1.0 # optional scaling of main results
scaled_fields: list = None
hf_compute_args: Dict[str, Any] = OptionalField(default_factory=dict)
experiment_id: str = OptionalField(default_factory=lambda: str(uuid.uuid4()))
def prepare(self):
super().prepare()
self.metric = evaluate.load(
self.hf_metric_name, experiment_id=self.experiment_id
)
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Dict],
) -> dict:
result = self.metric.compute(
predictions=predictions, references=references, **self.hf_compute_args
)
if self.hf_main_score:
result[self.main_score] = result[self.hf_main_score]
del result[self.hf_main_score]
if self.scale != 1.0:
assert (
self.scaled_fields is not None
), f"Scaling factor was set to {self.scale}, but no fields specified"
for key in self.scaled_fields:
assert (
key in result
), f"Trying to scale field '{key}' which is not in results of metrics: {result}"
if isinstance(result[key], list):
assert all(
isinstance(v, float) for v in result[key]
), "Not all scaled field '{key}' values are floats: {result[key]}"
result[key] = [v / self.scale for v in result[key]]
else:
assert isinstance(
result[key], float
), "Scaled field '{key}' is not float: {result[key]}"
result[key] /= self.scale
return result
class HuggingfaceBulkMetric(BulkInstanceMetric):
hf_metric_name: str
hf_metric_fields: List[str]
hf_compute_args: dict = {}
def prepare(self):
super().prepare()
self.metric = evaluate.load(self.hf_metric_name)
def compute(
self,
references: List[List[str]],
predictions: List[str],
additional_inputs: List[Any],
) -> List[Dict[str, Any]]:
scores = self.metric.compute(
predictions=predictions, references=references, **self.hf_compute_args
)
# convert dict of lists to a list of dicts
results = [{} for _ in range(len(scores[self.hf_metric_fields[0]]))]
for key in self.hf_metric_fields:
values = scores[key]
for result_id, result in enumerate(results):
result[key] = values[result_id]
return results
class F1(GlobalMetric):
_metric = None
main_score = "f1_macro"
average = None # Report per class then aggregate by mean
metric = "f1"
def prepare(self):
super().prepare()
self._metric = evaluate.load(self.metric)
def get_str_id(self, str):
if str not in self.str_to_id:
id = len(self.str_to_id)
self.str_to_id[str] = id
self.id_to_str[id] = str
return self.str_to_id[str]
def compute(
self,
references: List[List[str]],
predictions: List[str],
additional_inputs: List[Dict],
) -> dict:
assert all(
len(reference) == 1 for reference in references
), "Only a single reference per prediction is allowed in F1 metric"
self.str_to_id = {}
self.id_to_str = {}
formatted_references = [
self.get_str_id(reference[0]) for reference in references
]
self.str_to_id.keys()
formatted_predictions = [
self.get_str_id(prediction) for prediction in predictions
]
labels = list(set(formatted_references))
result = self._metric.compute(
predictions=formatted_predictions,
references=formatted_references,
labels=labels,
average=self.average,
)
if isinstance(result["f1"], numpy.ndarray):
from statistics import mean
final_result = {self.main_score: mean(result["f1"])}
for i, label in enumerate(labels):
final_result["f1_" + self.id_to_str[label]] = result["f1"][i]
else:
final_result = {self.main_score: result["f1"]}
return final_result
class F1Micro(F1):
main_score = "f1_micro"
average = "micro"
class F1Macro(F1):
main_score = "f1_macro"
class F1Weighted(F1):
main_score = "f1_weighted"
average = "weighted"
class F1MultiLabel(GlobalMetric):
_metric = None
main_score = "f1_macro"
average = None # Report per class then aggregate by mean
classes_to_ignore = ["none"]
def prepare(self):
super().prepare()
self._metric = evaluate.load("f1", "multilabel")
def add_str_to_id(self, str):
if str not in self.str_to_id:
id = len(self.str_to_id)
self.str_to_id[str] = id
self.id_to_str[id] = str
return
def get_one_hot_vector(self, labels: List[str]):
result = [0] * len(self.str_to_id)
for label in labels:
if label in self.str_to_id:
result[self.str_to_id[label]] = 1
return result
def compute(
self,
references: List[List[str]],
predictions: List[List[str]],
additional_inputs: List[Dict],
) -> dict:
self.str_to_id = {}
self.id_to_str = {}
assert all(
len(reference) == 1 for reference in references
), "Only a single reference per prediction is allowed in F1 multi label metric"
references = [reference[0] for reference in references]
for reference in references:
assert isinstance(
references, list
), f"Each reference is expected to list of strings in F1 multi label metric. Received reference: {reference}"
for prediction in predictions:
assert isinstance(
prediction, list
), f"Each prediction is expected to list of strings in F1 multi label metric. Received prediction: {prediction}"
labels = [
lbl
for lbl in {label for reference in references for label in reference}
if lbl not in self.classes_to_ignore
]
# if no classes are left then F1 is not defined
# (e.g. only "none" in references)
if len(labels) == 0:
return {self.main_score: float("nan")}
for label in labels:
self.add_str_to_id(label)
formatted_references = [
self.get_one_hot_vector(reference) for reference in references
]
formatted_predictions = [
self.get_one_hot_vector(prediction) for prediction in predictions
]
# There is odd behavior in scikit-learn that when passing a one-hot vector with a single
# element, it is treated a class identifier. Therefore, we add labels=[1] to limit to only
# to this class.
if len(labels) == 1:
labels_param = [1]
else:
labels_param = None
result = self._metric.compute(
predictions=formatted_predictions,
references=formatted_references,
average=self.average,
labels=labels_param,
)
if isinstance(result["f1"], numpy.ndarray):
from statistics import mean
assert len(result["f1"]) == len(
labels
), f'F1 result ({result["f1"]}) has more entries than labels ({labels})'
final_result = {self.main_score: mean(result["f1"])}
for i, label in enumerate(labels):
final_result["f1_" + label] = result["f1"][i]
else:
final_result = {self.main_score: result["f1"]}
return final_result
class F1MicroMultiLabel(F1MultiLabel):
main_score = "f1_micro"
average = "micro"
class F1MacroMultiLabel(F1MultiLabel):
main_score = "f1_macro"
average = None
class Rouge(HuggingfaceMetric):
hf_metric_name = "rouge"
main_score = "rougeL"
scale = 1.0
use_aggregator: bool = True
rouge_types: List[str] = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
sent_split_newline: bool = True
def prepare(self):
super().prepare()
self.hf_compute_args.update(
{"use_aggregator": self.use_aggregator, "rouge_types": self.rouge_types}
)
import nltk
nltk.download("punkt")
self.sent_tokenize = nltk.sent_tokenize
def compute(self, references, predictions, additional_inputs: List[Dict]):
if self.sent_split_newline:
predictions = [
"\n".join(self.sent_tokenize(prediction.strip()))
for prediction in predictions
]
references = [
["\n".join(self.sent_tokenize(r.strip())) for r in reference]
for reference in references
]
return super().compute(references, predictions, additional_inputs)
# Computes char edit distance, ignoring whitespace
class CharEditDistanceAccuracy(InstanceMetric):
reduction_map = {"mean": ["char_edit_dist_accuracy"]}
main_score = "char_edit_dist_accuracy"
def prepare(self):
super().prepare()
import editdistance
self.eval = editdistance.eval
def compute(
self, references, prediction: str, additional_inputs: List[Dict]
) -> dict:
assert (
len(references) == 1
), f"Expected only one reference , but received: {references}"
formatted_prediction = "".join(prediction.split())
formatted_reference = "".join(references[0].split())
max_length = max(len(formatted_reference), len(formatted_prediction))
if max_length == 0:
return {"char_edit_dist_accuracy": 0.0}
edit_dist = self.eval(formatted_reference, formatted_prediction)
return {"char_edit_dist_accuracy": (1 - edit_dist / max_length)}
class Wer(HuggingfaceMetric):
hf_metric_name = "wer"
main_score = "wer"
def compute(
self,
references: List[List[str]],
predictions: List[str],
additional_inputs: List[Dict],
) -> dict:
assert all(
len(reference) == 1 for reference in references
), "Only single reference per prediction is allowed in wer metric"
formatted_references = [reference[0] for reference in references]
result = self.metric.compute(
predictions=predictions, references=formatted_references
)
return {self.main_score: result}
class MatthewsCorrelation(HuggingfaceMetric):
hf_metric_name = "matthews_correlation"
main_score = "matthews_correlation"
str_to_id: dict = InternalField(default_factory=dict)
def get_str_id(self, str):
if str not in self.str_to_id:
id = len(self.str_to_id)
self.str_to_id[str] = id
return self.str_to_id[str]
def compute(
self,
references: List[List[str]],
predictions: List[str],
additional_inputs: List[Dict],
) -> dict:
formatted_references = [
self.get_str_id(reference[0]) for reference in references
]
formatted_predictions = [
self.get_str_id(prediction) for prediction in predictions
]
return self.metric.compute(
predictions=formatted_predictions, references=formatted_references
)
class CustomF1(GlobalMetric):
main_score = "f1_micro"
classes = None
zero_division = 0.0
@abstractmethod
def get_element_group(self, element):
pass
@abstractmethod
def get_element_representation(self, element):
pass
def group_elements(self, elements_list):
return {
k: Counter(
[
self.get_element_representation(value)
for value in elements_list
if self.get_element_group(value) == k
]
)
for k in {self.get_element_group(e) for e in elements_list}
}
def calculate_groups_ratio(self, actual_group, total_group):
return sum(
[min(actual_group[k], total_group[k]) for k in actual_group.keys()]
), sum(actual_group.values())
def precision(self, pn, pd, rn, rd):
return self.zero_division if pn == 0 and pd == 0 else pn / pd
def recall(self, pn, pd, rn, rd):
return self.zero_division if rn == 0 and rd == 0 else rn / rd
def f1(self, pn, pd, rn, rd):
precision = self.precision(pn, pd, rn, rd)
recall = self.recall(pn, pd, rn, rd)
try:
return 2 * precision * recall / (precision + recall)
except ZeroDivisionError:
return self.zero_division
def compute(
self,
references: List[Any],
predictions: List[Any],
additional_inputs: List[Dict],
) -> dict:
# in case reference are List[List[List[Any]]] and predictions are List[List[Any]]:
if isinstance(references[0], list) and isinstance(references[0][0], list):
references = [element[0] for element in references]
assert len(references) == len(predictions), (
f"references size ({len(references)})"
f" doesn't mach predictions sise ({len(references)})."
)
if self.classes is None:
classes = {
self.get_element_group(e) for sublist in references for e in sublist
}
else:
classes = self.classes
groups_statistics = {}
for references_batch, predictions_batch in zip(references, predictions):
grouped_references = self.group_elements(references_batch)
grouped_predictions = self.group_elements(predictions_batch)
all_groups = set(grouped_references.keys()).union(
grouped_predictions.keys()
)
for group in all_groups:
if group not in groups_statistics:
groups_statistics[group] = {
"precision_numerator": 0,
"precision_denominator": 0,
"recall_numerator": 0,
"recall_denominator": 0,
}
references_by_group = grouped_references.get(group, Counter([]))
predictions_by_group = grouped_predictions.get(group, Counter([]))
pn, pd = self.calculate_groups_ratio(
actual_group=predictions_by_group, total_group=references_by_group
)
rn, rd = self.calculate_groups_ratio(
actual_group=references_by_group, total_group=predictions_by_group
)
groups_statistics[group]["precision_numerator"] += pn
groups_statistics[group]["precision_denominator"] += pd
groups_statistics[group]["recall_numerator"] += rn
groups_statistics[group]["recall_denominator"] += rd
num_of_unknown_class_predictions = 0
pn_total = pd_total = rn_total = rd_total = 0
f1_result = {}
recall_result = {}
precision_result = {}
for group in groups_statistics.keys():
pn, pd, rn, rd = (
groups_statistics[group]["precision_numerator"],
groups_statistics[group]["precision_denominator"],
groups_statistics[group]["recall_numerator"],
groups_statistics[group]["recall_denominator"],
)
pn_total, pd_total, rn_total, rd_total = (
pn_total + pn,
pd_total + pd,
rn_total + rn,
rd_total + rd,
)
if group in classes:
f1_result[f"f1_{group}"] = self.f1(pn, pd, rn, rd)
recall_result[f"recall_{group}"] = self.recall(pn, pd, rn, rd)
precision_result[f"precision_{group}"] = self.precision(pn, pd, rn, rd)
else:
num_of_unknown_class_predictions += pd
result = f1_result
try:
result["f1_macro"] = sum(f1_result.values()) / len(result.keys())
result["recall_macro"] = sum(recall_result.values()) / len(
recall_result.keys()
)
result["precision_macro"] = sum(precision_result.values()) / len(
precision_result.keys()
)
except ZeroDivisionError:
result["f1_macro"] = self.zero_division
result["recall_macro"] = self.zero_division
result["micro_macro"] = self.zero_division
amount_of_predictions = pd_total
if amount_of_predictions == 0:
result["in_classes_support"] = 1.0
else:
result["in_classes_support"] = (
1.0 - num_of_unknown_class_predictions / amount_of_predictions
)
result["f1_micro"] = self.f1(pn_total, pd_total, rn_total, rd_total)
result["recall_micro"] = self.recall(pn_total, pd_total, rn_total, rd_total)
result["precision_micro"] = self.precision(
pn_total, pd_total, rn_total, rd_total
)
return result
class NER(CustomF1):
def get_element_group(self, element):
return element[1]
def get_element_representation(self, element):
return str(element)
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
class TokenOverlap(InstanceMetric):
reduction_map = {"mean": ["f1", "precision", "recall"]}
main_score = "f1"
def compute(
self, references: List[Any], prediction: Any, additional_inputs: List[Dict]
) -> dict:
results = [
self._compute_single_ref(reference, prediction) for reference in references
]
return {
measure: max(r[i] for r in results)
for i, measure in enumerate(["precision", "recall", "f1"])
}
def _compute_single_ref(
self, reference: Any, prediction: Any
) -> Tuple[float, float, float]:
prediction_tokens = normalize_answer(prediction).split()
reference_tokens = normalize_answer(reference).split()
common = Counter(prediction_tokens) & Counter(reference_tokens)
num_same = sum(common.values())
if num_same == 0:
pr, rc, f1 = 0, 0, 0
else:
pr = 1.0 * num_same / len(prediction_tokens)
rc = 1.0 * num_same / len(reference_tokens)
f1 = (2 * pr * rc) / (pr + rc)
return pr, rc, f1
class BertScore(HuggingfaceBulkMetric):
hf_metric_name = "bertscore"
main_score = "f1"
reduction_map = {"mean": ["f1", "precision", "recall"]}
hf_metric_fields = ["f1", "precision", "recall"]
model_name: str
def prepare(self):
super().prepare()
self.hf_compute_args = {"model_type": self.model_name}
class SentenceBert(BulkInstanceMetric):
reduction_map = {"mean": ["score"]}
main_score = "score"
batch_size: int = 32
model_name: str
def prepare(self):
super().prepare()
from sentence_transformers import SentenceTransformer
from sentence_transformers import util as sbert_util
self.model = SentenceTransformer(self.model_name)
self.util = sbert_util
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Dict],
) -> List[Any]:
scores = []
# we are in a multi-reference case (each prediction may have multiple
# references), so we need to flatten the refs in order to compute the
# embeddings in one batch, but first we have to store the spans of
# reference groups, so we can recover it later on.
ref_group_boundaries = []
count = 0
for ref_group in references:
ref_group_boundaries.append((count, count + len(ref_group)))
count += len(ref_group)
# compute s-bert embeddings
preds_emb = self.model.encode(predictions)
refs_emb = self.model.encode(
[ref for ref_group in references for ref in ref_group]
)
# for each candidate, pick the reference with the highest score
for pred_emb, ref_group_bounds in zip(preds_emb, ref_group_boundaries):
refs_group_emb = refs_emb[ref_group_bounds[0] : ref_group_bounds[1]]
scores.append(self.util.cos_sim(pred_emb, refs_group_emb).max().item())
return [{"score": score} for score in scores]
class Reward(BulkInstanceMetric):
reduction_map = {"mean": ["score"]}
main_score = "score"
batch_size: int = 32
model_name: str
def prepare(self):
super().prepare()
from transformers import pipeline
self.pipe = pipeline("text-classification", model=self.model_name)
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Dict],
) -> List[Any]:
# treat the references as the questions and the predictions as answers
# assume a single reference
questions = [refs[0] for refs in references]
answers = predictions
# prepare for computation
inputs = [{"text": q, "text_pair": a} for q, a in zip(questions, answers)]
# compute the metric
# add function_to_apply="none" to disable sigmoid
return self.pipe(inputs, batch_size=self.batch_size)
class NDCG(GlobalMetric):
"""Normalized Discounted Cumulative Gain: measures the quality of ranking with respect to ground truth ranking scores.
As this measures ranking, it is a global metric that can only be calculated over groups of instances. In the
common use case where the instances are grouped by different queries, i.e., where the task is to provide a
relevance score for a search result w.r.t. a query, an nDCG score is calculated per each query (specified in the
"query" input field of an instance) and the final score is the average across all queries.
Note that the expected scores are relevance scores (i.e., higher is better) and not rank indices. The absolute
value of the scores is only meaningful for the reference scores; for the predictions, only the ordering of the
scores affects the outcome - for example, predicted scores of [80, 1, 2] and [0.8, 0.5, 0.6] will receive
the same nDCG score w.r.t. a given set of reference scores.
See also https://en.wikipedia.org/wiki/Discounted_cumulative_gain
"""
main_score = "nDCG"
def prepare(self):
from sklearn.metrics import ndcg_score
super().prepare()
self.eval = ndcg_score
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Any],
) -> dict:
from collections import defaultdict
from statistics import mean
query_to_predictions_and_references = defaultdict(lambda: [[], []])
for reference, pred, inputs_dict in zip(
references, predictions, additional_inputs
):
query = inputs_dict.get("query")
query_to_predictions_and_references[query][0].append(pred)
query_to_predictions_and_references[query][1].append(reference)
scores = []
for q_predictions, q_references in query_to_predictions_and_references.values():
if len(q_references) == 1:
continue
if (
None in q_predictions
): # model failed to predict numeric scores for some instances
numeric_predictions = [
pred for pred in q_predictions if pred is not None
]
if len(numeric_predictions) <= 1: # no meaningful ranking
scores.append(0)
continue
# consider non-numeric model predictions as ranked last
min_value = min(numeric_predictions)
q_predictions = [
1 + (pred - min_value) if pred is not None else 0
for pred in q_predictions
]
scores.append(self.eval([q_references], [q_predictions]))
return {self.main_score: mean(scores) if len(scores) > 0 else np.nan}
|