File size: 18,461 Bytes
063834c 3478957 1ec0bfb 2a28be6 6b26378 2a28be6 3478957 2a28be6 63d3ef3 3478957 63d3ef3 3478957 835bd85 3478957 63d3ef3 3478957 835bd85 63d3ef3 2a28be6 3478957 835bd85 3478957 63d3ef3 835bd85 63d3ef3 3478957 835bd85 3478957 63d3ef3 3478957 cbce8ee 3478957 63d3ef3 5f2e7a1 63d3ef3 eb86bdf 063834c eb86bdf 63d3ef3 835bd85 eb86bdf 3478957 eb86bdf 3478957 eb86bdf 2a28be6 3478957 835bd85 3478957 5f2e7a1 3478957 835bd85 3478957 835bd85 3478957 2a28be6 835bd85 2a28be6 3478957 2a28be6 eb86bdf 2a28be6 3478957 63d3ef3 6db8cc3 5f2e7a1 6db8cc3 2a28be6 6db8cc3 3478957 6db8cc3 835bd85 6db8cc3 835bd85 6db8cc3 3478957 6db8cc3 3478957 6db8cc3 eb86bdf 3478957 5f2e7a1 eb86bdf 5f2e7a1 eb86bdf 3478957 eb86bdf 6b26378 3478957 6b26378 3478957 6b26378 3478957 6b26378 3478957 2a28be6 3478957 2a28be6 3478957 2a28be6 3478957 2a28be6 3478957 6b26378 063834c 50eeb1b 063834c 50eeb1b 063834c 50eeb1b 063834c 50eeb1b 063834c 50eeb1b 3478957 063834c 3478957 50eeb1b 063834c 50eeb1b 063834c 3478957 063834c 2a28be6 063834c 2a28be6 063834c 3478957 063834c 50eeb1b 63d3ef3 2a28be6 63d3ef3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
import json
from abc import abstractmethod
from typing import Any, Dict, List, Optional, Tuple
from .collections import ListCollection
from .dataclass import NonPositionalField
from .operator import StreamInstanceOperator
from .random_utils import new_random_generator
from .type_utils import isoftype
class Template(StreamInstanceOperator):
"""The role of template is to take the fields of every instance and verbalize it.
Meaning the template is taking the instance and generating source, target and references.
Args:
skip_rendered_instance (bool): if "source", "target", and "references" are already defined fields in the instance, skip its processing
postprocessors: a list of strings being artifact names of text processors, to be applied on the model output
instruction: a formatting string that yields an instruction with potential participation of values from the "inputs" part of the instance
target_prefix: a string to be used to format the prompt. Not a formatting string.
"""
skip_rendered_instance: bool = NonPositionalField(default=True)
postprocessors: List[str] = NonPositionalField(
default_factory=lambda: ["processors.to_string_stripped"]
)
instruction: str = NonPositionalField(default_factory=lambda: "")
target_prefix: str = NonPositionalField(default_factory=lambda: "")
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
if self.skip_rendered_instance:
if (
"source" in instance
and "target" in instance
and "references" in instance
):
return instance
inputs = instance.get("inputs")
outputs = instance.get("outputs")
source, instruction = self.inputs_to_source(inputs)
target, references = self.outputs_to_target_and_references(outputs)
return {
**instance,
"source": source,
"target": target,
"references": references,
"instruction": instruction,
"target_prefix": self.target_prefix.format(**inputs),
}
@abstractmethod
def inputs_to_source(self, inputs: Dict[str, object]) -> Tuple[str, str]:
pass
@abstractmethod
def outputs_to_target_and_references(
self, outputs: Dict[str, object]
) -> Tuple[str, List[str]]:
pass
def get_postprocessors(self) -> List[str]:
return self.postprocessors
class InputOutputTemplate(Template):
"""Generate field 'source' from fields designated as input, and fields 'target' and 'references' from fields designated as output, of the processed instance.
Args specify the formatting strings with which to glue together the input and output designated fields of the processed instance into one string ('source' and 'target'), and into a list of strings ('references').
"""
input_format: str = None
output_format: str = None
def process_template(self, template: str, data: Dict[str, object]) -> str:
data = {k: ", ".join(v) if isinstance(v, list) else v for k, v in data.items()}
return template.format(**data)
def inputs_to_source(self, inputs: Dict[str, object]) -> Tuple[str, str]:
formatted = []
for formatting in [self.input_format, self.instruction]:
try:
formatted.append(self.process_template(formatting, inputs))
except KeyError as e:
raise KeyError(
f"Available inputs are {list(inputs.keys())} but input format requires a different ones: '{formatting}'"
) from e
return tuple(formatted)
def outputs_to_target_and_references(self, outputs: Dict[str, object]) -> str:
try:
target = self.process_template(self.output_format, outputs)
except KeyError as e:
raise KeyError(
f"Available outputs are {outputs.keys()} but output format requires a different one: {self.output_format}"
) from e
references = [target]
return target, references
class InputOutputReferenceTemplate(InputOutputTemplate):
reference: str
def outputs_to_target_and_references(self, outputs: Dict[str, object]) -> str:
output_fields = {}
for name, val in [
("target", self.output_format),
("reference", self.reference),
]:
try:
result = self.process_template(val, outputs)
output_fields[name] = result
except KeyError as e:
raise KeyError(
f"Available outputs are {outputs.keys()} but {name} requires a different one: {val}"
) from e
return output_fields["target"], [output_fields["reference"]]
class MultipleChoiceTemplate(Template):
"""Formats the input (that specifies the question), the multiple choices to select the answer from, and specifies the field with the correct answer."""
input_format: str
target_prefix: str = ""
choices_field: str = "choices"
target_field: str = "label"
choices_seperator: str = ", "
source_choice_format: str = "{choice_numeral}. {choice_text}"
target_choice_format: str = "{choice_numeral}"
add_numerals_as_field: str = None
enumerator: str = "capitals"
def prepare(self):
super().prepare()
if self.enumerator == "capitals":
self.enumerator = "ABCDEFGHIJKLMNOP"
if self.enumerator == "lowercase":
self.enumerator = "abcdefghijklmnop"
if self.enumerator == "numbers":
self.enumerator = [str(i + 1) for i in range(20)]
if self.enumerator == "roman":
self.enumerator = [
"I",
"II",
"III",
"IV",
"V",
"VI",
"VII",
"VIII",
"IX",
"X",
"XI",
"XII",
"XIII",
"XIV",
"XV",
"XVI",
"XVII",
"XVIII",
"XIX",
"XX",
]
def get_choices(self, data: Dict[str, object], choice_format: str) -> str:
choices = data[self.choices_field]
enumrated_choices = []
for i, choice in enumerate(choices):
enumrated_choices.append(
choice_format.format(
choice_text=choice,
choice_numeral=self.enumerator[i],
)
)
return enumrated_choices
def inputs_to_source(self, inputs: Dict[str, object]) -> Tuple[str, str]:
choices = self.get_choices(inputs, self.source_choice_format)
inputs = {
"numerals": ",".join(self.get_choices(inputs, "{choice_numeral}")),
**inputs,
self.choices_field: self.choices_seperator.join(choices),
}
formatted = []
for formatting in [self.input_format, self.instruction]:
try:
formatted.append(formatting.format(**inputs))
except KeyError as e:
raise KeyError(
f"Available inputs are {inputs.keys()} but input format requires a different one: {formatting}"
) from e
return tuple(formatted)
def outputs_to_target_and_references(self, outputs: Dict[str, object]) -> str:
target = outputs[self.target_field]
if not isinstance(target, int):
try:
target = outputs[self.choices_field].index(target)
except ValueError as e:
raise ValueError(
f"MultipleChoiceTemplate could not locate textual target '{target}' in choices list: {outputs[self.choices_field]}"
) from e
choices = self.get_choices(outputs, self.target_choice_format)
try:
target = choices[target]
except IndexError as e:
raise IndexError(
f"MultipleChoiceTemplate cannot find index number {target} in choices: {choices}"
) from e
return target, [target]
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
result = super().process(instance, stream_name)
if "options" not in result["outputs"]:
result["outputs"]["options"] = self.get_choices(
instance["outputs"], self.target_choice_format
)
return result
class YesNoTemplate(Template):
"""A template for generating binary Yes/No questions asking whether an input text is of a specific class.
input_format:
Defines the format of the question.
class_field:
Defines the field that contains the name of the class that this template
asks of.
label_field:
Defines the field which contains the true label of the input text. If a gold label is equal to the
value in class_name, then the correct output is self.yes_answer (by default, "Yes").
Otherwise the correct output is self.no_answer (by default, "No").
yes_answer:
The output value for when the gold label equals self.class_name.
Defaults to "Yes".
no_answer:
The output value for when the gold label differs from self.class_name.
Defaults to "No".
"""
input_format: str = None
class_field: str = None
label_field: str = None
yes_answer: str = "Yes"
no_answer: str = "No"
def inputs_to_source(self, inputs: Dict[str, object]) -> Tuple[str, str]:
data = {
k: ", ".join(v) if isinstance(v, list) else v for k, v in inputs.items()
}
formatted = []
for formatting in [self.input_format, self.instruction]:
try:
formatted.append(formatting.format(**data))
except KeyError as e:
raise RuntimeError(
f"Available inputs are {list(inputs.keys())} but input format requires a different one: {formatting}"
) from e
return tuple(formatted)
def outputs_to_target_and_references(self, outputs: Dict[str, object]) -> str:
try:
gold_class_names = outputs[self.label_field]
except KeyError as e:
raise RuntimeError(
f"Available outputs are {list(outputs.keys())}, missing required label field: '{self.label_field}'."
) from e
if not isinstance(gold_class_names, list) or not gold_class_names:
raise RuntimeError(
f"Unexpected value for gold_class_names: '{gold_class_names}'. Expected a non-empty list."
)
try:
queried_class_names = outputs[self.class_field]
except KeyError as e:
raise RuntimeError(
f"Available outputs are {list(outputs.keys())}, missing required class field: '{self.class_field}'."
) from e
if (
not queried_class_names
or not isinstance(queried_class_names, list)
or not len(queried_class_names) == 1
):
raise RuntimeError(
f"Unexpected value for queried_class_names: '{queried_class_names}'. Expected a list with one item."
)
queried_class_name = queried_class_names[0]
if queried_class_name in gold_class_names:
return self.yes_answer, [self.yes_answer]
return self.no_answer, [self.no_answer]
class KeyValTemplate(Template):
"""Generate field 'source' from fields designated as input, and fields 'target' and 'references' from fields designated as output, of the processed instance.
Args specify with what separators to glue together the input and output designated fields of the processed instance into one string ('source' and 'target'), and into a list of strings ('references').
"""
pairs_seperator: str = ", "
key_val_seperator: str = ": "
use_keys_for_inputs: bool = True
outputs_key_val_seperator: str = ": "
use_keys_for_outputs: bool = False
def process_dict(
self, dic: Dict[str, object], key_val_sep, pairs_sep, use_keys
) -> str:
dic = {
k: ", ".join([str(vi) for vi in v]) if isinstance(v, list) else v
for k, v in dic.items()
}
pairs = []
for key, val in dic.items():
key_val = [key, str(val)] if use_keys else [str(val)]
pairs.append(key_val_sep.join(key_val))
return pairs_sep.join(pairs)
def inputs_to_source(self, inputs: Dict[str, object]) -> Tuple[str, str]:
ret = self.process_dict(
inputs,
key_val_sep=self.key_val_seperator,
pairs_sep=self.pairs_seperator,
use_keys=self.use_keys_for_inputs,
)
return (ret, ret)
def outputs_to_target_and_references(self, outputs: Dict[str, object]) -> str:
target = self.process_dict(
outputs,
key_val_sep=self.key_val_seperator,
pairs_sep=self.pairs_seperator,
use_keys=self.use_keys_for_outputs,
)
return target, [target]
class OutputQuantizingTemplate(InputOutputTemplate):
quantum: float = 0.1
def outputs_to_target_and_references(self, outputs: Dict[str, object]) -> str:
quantum_str = f"{self.quantum:.10f}".rstrip("0").rstrip(".")
quantized_outputs = {
key: f"{round(value / self.quantum) * self.quantum:{quantum_str}}"
for key, value in outputs.items()
}
return super().outputs_to_target_and_references(quantized_outputs)
class MultiLabelTemplate(InputOutputTemplate):
labels_field: str = "labels"
labels_seprator: str = ", "
postprocessors: List[str] = ["processors.to_list_by_comma"]
output_format: str = "{labels}"
empty_label: str = "None"
def outputs_to_target_and_references(self, outputs: Dict[str, object]) -> str:
labels = outputs[self.labels_field]
if not isinstance(labels, list):
raise ValueError(
f"MultiLabelTemplate requires labels field '{self.labels_field}' to be a list. Got {self.labels_field}<{type(labels).__name__}>: {labels}"
)
if len(labels) == 0:
labels = [self.empty_label]
labels_str = self.labels_seprator.join(labels)
return super().outputs_to_target_and_references({self.labels_field: labels_str})
class MultiReferenceTemplate(InputOutputTemplate):
references_field: str = "references"
random_reference: bool = False
def outputs_to_target_and_references(self, outputs: Dict[str, object]) -> List[str]:
references = outputs[self.references_field]
if not isoftype(references, List[str]):
raise ValueError(
f"MultiReferenceTemplate requires references field '{self.references_field}' to be List[str]. Got {self.references_field}<{type(references).__name__}>: {references}"
)
if len(references) == 0:
raise ValueError(
"No references found. MultiReferenceTemplate requires at least one reference."
)
if self.random_reference:
random_generator = new_random_generator(outputs)
target = random_generator.choice(references)
else:
target = references[0]
return target, references
def escape_chars(s, chars_to_escape):
for char in chars_to_escape:
s = s.replace(char, f"\\{char}")
return s
class SpanLabelingBaseTemplate(MultiLabelTemplate):
spans_starts_field: str = "spans_starts"
spans_ends_field: str = "spans_ends"
text_field: str = "text"
labels_support: list = None
def extract_span_label_pairs(self, outputs):
spans_starts = outputs[self.spans_starts_field]
spans_ends = outputs[self.spans_ends_field]
text = outputs[self.text_field]
labels = outputs[self.labels_field]
spans = []
for span_start, span_end, label in zip(spans_starts, spans_ends, labels):
if self.labels_support is None or label in self.labels_support:
spans.append((span_start, span_end, text[span_start:span_end], label))
for span in sorted(spans):
if self.labels_support is None or span[3] in self.labels_support:
yield span[2], span[3]
def outputs_to_target_and_references(
self, outputs: Dict[str, object]
) -> Dict[str, object]:
span_lables_pairs = self.extract_span_label_pairs(outputs)
targets = self.span_label_pairs_to_targets(span_lables_pairs)
return super().outputs_to_target_and_references({"labels": targets})
@abstractmethod
def span_label_pairs_to_targets(self, pairs):
pass
class SpanLabelingTemplate(SpanLabelingBaseTemplate):
span_label_format: str = "{span}: {label}"
escape_characters: List[str] = [":", ","]
postprocessors: List[str] = ["processors.to_span_label_pairs"]
def span_label_pairs_to_targets(self, span_label_pairs):
targets = []
for span, label in span_label_pairs:
if self.escape_characters is not None:
span = escape_chars(span, self.escape_characters)
target = self.span_label_format.format(span=span, label=label)
targets.append(target)
return targets
class SpanLabelingJsonTemplate(SpanLabelingBaseTemplate):
postprocessors = [
"processors.load_json",
"processors.dict_of_lists_to_value_key_pairs",
]
def span_label_pairs_to_targets(self, span_label_pairs):
groups = {}
for span, label in span_label_pairs:
if label not in groups:
groups[label] = []
groups[label].append(span)
if len(groups) > 0:
targets = [json.dumps(groups, ensure_ascii=False)]
else:
targets = []
return targets
class TemplatesList(ListCollection):
def verify(self):
for template in self.items:
assert isinstance(template, Template)
class TemplatesDict(Dict):
def verify(self):
for _key, template in self.items():
assert isinstance(template, Template)
|