Datasets:

ArXiv:
File size: 19,289 Bytes
d2c1791
8a2695c
ba7196e
 
 
 
 
 
8a2695c
d2c1791
d674096
214f156
 
27b9a8f
ba7196e
8a2695c
d2c1791
ba7196e
c7691bd
d2c1791
27b9a8f
c14613d
c7691bd
ba7196e
8a2695c
c7691bd
214f156
 
8a2695c
c27dcc7
 
 
 
 
 
d2c1791
c7691bd
 
ba7196e
c14613d
214f156
ba7196e
d2c1791
 
 
d674096
 
8a2695c
c7691bd
 
c27dcc7
 
483867f
 
 
 
c27dcc7
 
 
483867f
8a2695c
d2c1791
c14613d
8a2695c
 
 
 
 
 
c27dcc7
 
8a2695c
 
214f156
 
 
d2c1791
 
 
 
 
 
483867f
 
c7691bd
 
 
 
 
 
 
 
 
 
 
d2c1791
483867f
 
4273540
483867f
d2c1791
483867f
d2c1791
c27dcc7
 
 
214f156
c27dcc7
 
 
 
 
214f156
c27dcc7
 
 
 
 
 
214f156
c27dcc7
 
 
 
 
 
214f156
483867f
6f701a4
 
 
 
 
 
 
 
 
 
483867f
d2c1791
 
 
 
 
 
 
 
 
 
 
ba7196e
 
 
 
 
ce9f5c0
 
 
27b9a8f
ce9f5c0
 
 
27b9a8f
ce9f5c0
 
 
27b9a8f
ce9f5c0
d2c1791
 
6f701a4
d2c1791
6f701a4
 
27b9a8f
c7691bd
 
009cdd3
c7691bd
 
009cdd3
c7691bd
 
 
 
 
 
009cdd3
d2c1791
 
27b9a8f
009cdd3
27b9a8f
8a2695c
27b9a8f
 
 
 
af22a0d
d2c1791
27b9a8f
 
 
 
 
 
 
 
af22a0d
27b9a8f
 
 
 
 
 
 
 
 
af22a0d
27b9a8f
 
 
 
d2c1791
27b9a8f
 
 
 
c7691bd
 
27b9a8f
 
d2c1791
27b9a8f
 
 
 
 
 
 
d2c1791
 
 
 
 
 
 
 
27b9a8f
 
 
 
 
c7691bd
27b9a8f
 
 
 
c7691bd
27b9a8f
c7691bd
 
706fe4c
 
c7691bd
 
27b9a8f
c7691bd
27b9a8f
c7691bd
 
 
 
 
 
 
 
 
 
 
 
27b9a8f
 
1a85f63
4273540
d2c1791
 
4273540
27b9a8f
 
c27dcc7
c7691bd
 
8a2695c
c7691bd
8a2695c
ba7196e
 
27b9a8f
c27dcc7
d2c1791
27b9a8f
c27dcc7
8a2695c
 
 
c14613d
8a2695c
 
6c76646
d2c1791
214f156
 
 
 
 
 
 
8a2695c
ce9f5c0
483867f
d2c1791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214f156
d2c1791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214f156
d2c1791
 
 
 
 
 
 
 
c27dcc7
d2c1791
 
ba7196e
d2c1791
8a2695c
d2c1791
 
 
8a2695c
d2c1791
 
 
 
c7691bd
 
 
ba7196e
 
c7691bd
afc257f
 
483867f
afc257f
 
 
 
 
c27dcc7
 
 
 
afc257f
c27dcc7
 
 
 
c14613d
c27dcc7
 
 
c14613d
c27dcc7
afc257f
 
483867f
 
 
214f156
c27dcc7
 
483867f
 
 
 
 
 
c14613d
c27dcc7
214f156
d674096
 
c7691bd
483867f
 
 
 
 
 
 
 
 
 
 
c14613d
6f701a4
483867f
c27dcc7
483867f
 
 
 
 
 
 
 
 
 
c14613d
483867f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
from typing import List, Optional, Union

from .augmentors import (
    Augmentor,
    FinalStateInputsAugmentor,
    NullAugmentor,
    TaskInputsAugmentor,
)
from .card import TaskCard
from .collections_operators import GetLength
from .dataclass import Field, InternalField, NonPositionalField, OptionalField
from .formats import Format, SystemFormat
from .logging_utils import get_logger
from .operator import SequentialOperator, SourceSequentialOperator, StreamingOperator
from .operators import Set, StreamRefiner
from .recipe import Recipe
from .schema import Finalize
from .serializers import SingleTypeSerializer
from .settings_utils import get_constants
from .splitters import ConstantSizeSample, RandomSizeSample, Sampler, SeparateSplit
from .stream import MultiStream
from .system_prompts import EmptySystemPrompt, SystemPrompt
from .task import Task
from .templates import ApplyRandomTemplate, ApplySingleTemplate, Template, TemplatesList

constants = get_constants()
logger = get_logger()


# Used to give meaningful name to recipe steps
class CreateDemosPool(SeparateSplit):
    pass


class BaseRecipe(Recipe, SourceSequentialOperator):
    # Base parameters
    card: TaskCard = None
    task: Task = None
    template: Union[Template, List[Template], TemplatesList] = None
    system_prompt: SystemPrompt = Field(default_factory=EmptySystemPrompt)
    format: Format = Field(default_factory=SystemFormat)
    serializer: Union[SingleTypeSerializer, List[SingleTypeSerializer]] = None

    # Additional parameters
    template_card_index: int = NonPositionalField(default=None)
    metrics: List[str] = NonPositionalField(default=None)
    postprocessors: List[str] = NonPositionalField(default=None)

    group_by: List[Union[str, List[str]]] = []

    loader_limit: int = None

    max_train_instances: int = None
    max_validation_instances: int = None
    max_test_instances: int = None

    train_refiner: StreamRefiner = OptionalField(default_factory=StreamRefiner)
    validation_refiner: StreamRefiner = OptionalField(default_factory=StreamRefiner)
    test_refiner: StreamRefiner = OptionalField(default_factory=StreamRefiner)

    demos_pool_size: int = None
    num_demos: Optional[Union[int, List[int]]] = 0
    demos_removed_from_data: bool = True

    demos_pool_name: str = "demos_pool"
    demos_taken_from: str = "train"
    demos_field: str = "demos"
    sampler: Sampler = None

    augmentor: Augmentor = OptionalField(default_factory=NullAugmentor)

    steps: List[StreamingOperator] = InternalField(default_factory=list)

    def before_process_multi_stream(self):
        super().before_process_multi_stream()

    @property
    def max_demos_size(self):
        if isinstance(self.num_demos, list):
            return max(self.num_demos)
        return self.num_demos

    def verify(self):
        super().verify()

        if self.task is None and self.card is None:
            raise ValueError("Set card or task in the recipe")

        if self.card is None and (
            self.num_demos > 0 or self.demos_pool_size is not None
        ):
            raise ValueError(
                "To use num_demos and demos_pool_size in recipe set a card."
            )

        if self.use_demos:
            if self.demos_pool_size is None or self.demos_pool_size < 1:
                raise ValueError(
                    "When using demonstrations both num_demos and demos_pool_size should be assigned with positive integers."
                )
            if self.demos_pool_size < self.max_demos_size:
                raise ValueError(
                    f"num_demos (got: {self.max_demos_size}) should not exceed demos_pool_size (got: {self.demos_pool_size})"
                )
            if self.loader_limit and self.demos_pool_size > self.loader_limit:
                raise ValueError(
                    f"demos_pool_size should not exceed loader_limit ({self.loader_limit}), Got demos_pool_size={self.demos_pool_size}"
                )

        if self.loader_limit:
            if self.max_test_instances and self.max_test_instances > self.loader_limit:
                raise ValueError(
                    f"max_test_instances should not exceed loader_limit ({self.loader_limit}), Got max_test_instances={self.max_test_instances}"
                )
            if (
                self.max_validation_instances
                and self.max_validation_instances > self.loader_limit
            ):
                raise ValueError(
                    f"max_validation_instances should not exceed loader_limit ({self.loader_limit}), Got max_validation_instances={self.max_validation_instances}"
                )
            if (
                self.max_train_instances
                and self.max_train_instances > self.loader_limit
            ):
                raise ValueError(
                    f"max_train_instances should not exceed loader_limit ({self.loader_limit}), Got max_train_instances={self.max_train_instances}"
                )
        if self.metrics is not None and not isinstance(self.metrics, List):
            raise ValueError(
                f"metrics must be a list of metrics.  Got metrics = {self.metrics}"
            )
        if self.postprocessors is not None and not isinstance(
            self.postprocessors, List
        ):
            raise ValueError(
                f"post processors must be a list of post processor.  Got postprocessors = {self.postprocessors}"
            )

        if self.template is None:
            raise ValueError(
                "You must set in the recipe either `template`, `template_card_index` or `templates`."
            )

        if isinstance(self.template, list):
            for template in self.template:
                self.verify_template(template)
        else:
            self.verify_template(self.template)

        if self.serializer is not None:
            if not isinstance(self.serializer, list):
                self.serializer = [self.serializer]
            self.template.serializer.add_serializers(self.serializer)

    def prepare_refiners(self):
        self.train_refiner.max_instances = self.max_train_instances
        self.train_refiner.apply_to_streams = ["train"]
        self.processing.steps.append(self.train_refiner)

        self.validation_refiner.max_instances = self.max_validation_instances
        self.validation_refiner.apply_to_streams = ["validation"]
        self.processing.steps.append(self.validation_refiner)

        self.test_refiner.max_instances = self.max_test_instances
        self.test_refiner.apply_to_streams = ["test"]
        self.processing.steps.append(self.test_refiner)

    def verify_template(self, template):
        if not isinstance(template, Template):
            raise ValueError(
                f"template argument must be an object of type Template. Got template = {template}"
            )

    def set_pipelines(self):
        self.loading = SequentialOperator(
            __description__="Loading the data from the data source."
        )
        self.metadata = SequentialOperator(
            __description__="Adding metadata (e.g. format, system prompt, template)  "
        )
        self.standardization = SequentialOperator(
            __description__="Standardizing the raw dataset fields to task field definition."
        )

        self.processing = SequentialOperator(
            __description__="Setting task fields (and selecting demos per sample if needed)."
        )
        self.verbalization = SequentialOperator()
        self.verbalization.__description__ = "Verbalizing the input to the model and gold references to the 'source', 'target' and 'references' fields."
        self.finalize = SequentialOperator()
        self.finalize.__description__ = "Adding post processors. Removing intermediate fields. Creating the final output dataset."

        self.steps = [
            self.loading,
            self.metadata,
            self.standardization,
            self.processing,
            self.metadata,
            self.verbalization,
            self.finalize,
        ]

        self.inference_instance = SequentialOperator()

        self.inference_instance.steps = [
            self.metadata,
            self.processing,
            self.metadata,
        ]

        self.inference_demos = SourceSequentialOperator()

        self.inference_demos.steps = [
            self.loading,
            self.metadata,
            self.standardization,
            self.processing,
            self.metadata,
        ]

        self.inference = SequentialOperator()

        self.inference.steps = [self.verbalization, self.finalize]

        self._demos_pool_cache = None

    def production_preprocess(self, task_instances):
        ms = MultiStream.from_iterables({constants.inference_stream: task_instances})
        return list(self.inference_instance(ms)[constants.inference_stream])

    def production_demos_pool(self):
        if self.use_demos:
            if self._demos_pool_cache is None:
                self._demos_pool_cache = list(
                    self.inference_demos()[self.demos_pool_name]
                )
            return self._demos_pool_cache
        return []

    @property
    def has_custom_demos_pool(self):
        return self.demos_pool_size is not None and self.demos_pool_size > 0

    @property
    def use_demos(self):
        return self.num_demos is not None and self.max_demos_size > 0

    def produce(self, task_instances):
        """Use the recipe in production to produce model ready query from standard task instance."""
        self.before_process_multi_stream()
        multi_stream = MultiStream.from_iterables(
            {
                constants.inference_stream: self.production_preprocess(task_instances),
                self.demos_pool_name: self.production_demos_pool(),
            }
        )
        multi_stream = self.inference(multi_stream)
        return list(multi_stream[constants.inference_stream])

    def reset_pipeline(self):
        if self.card and self.card.preprocess_steps is None:
            self.card.preprocess_steps = []

        if self.task is None:
            self.task = self.card.task

        self.set_pipelines()

        if self.card is not None:
            loader = self.card.loader
            if self.loader_limit:
                loader.loader_limit = self.loader_limit
                logger.info(f"Loader line limit was set to  {self.loader_limit}")
            self.loading.steps.append(loader)

            # This is required in case loader_limit is not enforced by the loader
            if self.loader_limit:
                self.loading.steps.append(
                    StreamRefiner(max_instances=self.loader_limit)
                )

        self.metadata.steps.append(
            Set(
                fields={
                    "recipe_metadata/system_prompt": self.system_prompt,
                    "recipe_metadata/format": self.format,
                }
            )
        )

        if self.card:
            self.standardization.steps.extend(self.card.preprocess_steps)

        self.processing.steps.append(self.task)

        if isinstance(self.augmentor, TaskInputsAugmentor):
            self.augmentor.set_fields(self.card.task.augmentable_inputs)
            self.processing.steps.append(self.augmentor)

        if self.has_custom_demos_pool:
            self.processing.steps.append(
                CreateDemosPool(
                    from_split=self.demos_taken_from,
                    to_split_names=[self.demos_pool_name, self.demos_taken_from],
                    to_split_sizes=[int(self.demos_pool_size)],
                    remove_targets_from_source_split=self.demos_removed_from_data,
                )
            )

        if self.use_demos:
            if self.sampler is None:
                if self.card.sampler is None:
                    raise ValueError(
                        "Unexpected None value for card.sampler. "
                        "To use num_demos > 0, please set a sampler on the TaskCard."
                    )
                self.sampler = self.card.sampler

        self.prepare_refiners()

        if self.use_demos:
            if isinstance(self.num_demos, int):
                self.verbalization.steps.append(
                    ConstantSizeSample(
                        from_stream=self.demos_pool_name,
                        to_field=self.demos_field,
                        sampler=self.sampler,
                        sample_size=self.num_demos,
                    )
                )
                self.verbalization.steps.append(
                    Set(fields={"recipe_metadata/num_demos": self.num_demos})
                )

            elif isinstance(self.num_demos, list):
                self.verbalization.steps.append(
                    RandomSizeSample(
                        from_stream=self.demos_pool_name,
                        to_field=self.demos_field,
                        sampler=self.sampler,
                        sample_sizes=self.num_demos,
                    )
                )
                self.verbalization.steps.append(
                    GetLength(field="demos", to_field="recipe_metadata/num_demos")
                )
            else:
                raise ValueError("num_demos must be int or List[int]")

            if isinstance(self.template, list):
                self.verbalization.steps.append(
                    ApplyRandomTemplate(
                        templates=self.template, demos_field=self.demos_field
                    )
                )
            else:
                self.verbalization.steps.append(
                    ApplySingleTemplate(
                        template=self.template, demos_field=self.demos_field
                    )
                )
        else:
            self.verbalization.steps.append(
                Set(fields={"recipe_metadata/num_demos": 0})
            )
            if isinstance(self.template, list):
                self.verbalization.steps.append(
                    ApplyRandomTemplate(templates=self.template)
                )
            else:
                self.verbalization.steps.append(
                    ApplySingleTemplate(template=self.template)
                )

        self.verbalization.steps.append(self.system_prompt)
        self.verbalization.steps.append(self.format)
        if isinstance(self.augmentor, FinalStateInputsAugmentor):
            self.verbalization.steps.append(self.augmentor)

        if self.postprocessors is not None:
            self.finalize.steps.append(
                Set(fields={"postprocessors": self.postprocessors})
            )

        if self.metrics is not None:
            self.finalize.steps.append(Set(fields={"metrics": self.metrics}))

        self.finalize.steps.append(Finalize(group_by=self.group_by))

    def prepare(self):
        if isinstance(self.template, TemplatesList):
            self.template = self.template.items
        self.reset_pipeline()


class StandardRecipeWithIndexes(BaseRecipe):
    template_card_index: int = None

    def prepare(self):
        assert (
            self.template_card_index is None or self.template is None
        ), f"Specify either template ({self.template}) or template_card_index ({self.template_card_index}) but not both"
        assert not (
            self.template_card_index is None and self.template is None
        ), "Specify either template or template_card_index in card"
        if self.template_card_index is not None:
            try:
                self.template = self.card.templates[self.template_card_index]
            except Exception as e:
                if isinstance(self.card.templates, dict):
                    options = list(self.card.templates.keys())
                else:
                    options = list(range(0, len(self.card.templates)))
                raise ValueError(
                    f"card_template_index '{self.template_card_index}' is not defined in card. Possible card_template_index options: {options}"
                ) from e

        super().prepare()


class StandardRecipe(StandardRecipeWithIndexes):
    """This class represents a standard recipe for data processing and preparation.

    This class can be used to prepare a recipe.
    with all necessary steps, refiners and renderers included. It allows to set various
    parameters and steps in a sequential manner for preparing the recipe.

    Attributes:
        card (TaskCard): TaskCard object associated with the recipe.
        template (Template, optional): Template object to be used for the recipe.
        system_prompt (SystemPrompt, optional): SystemPrompt object to be used for the recipe.
        loader_limit (int, optional): Specifies the maximum number of instances per stream to be returned from the loader (used to reduce loading time in large datasets)
        format (SystemFormat, optional): SystemFormat object to be used for the recipe.
        metrics (List[str]): list of catalog metrics to use with this recipe.
        postprocessors (List[str]): list of catalog processors to apply at post processing. (Not recommended to use from here)
        group_by (List[Union[str, List[str]]]): list of task_data or metadata keys to group global scores by.
        train_refiner (StreamRefiner, optional): Train refiner to be used in the recipe.
        max_train_instances (int, optional): Maximum training instances for the refiner.
        validation_refiner (StreamRefiner, optional): Validation refiner to be used in the recipe.
        max_validation_instances (int, optional): Maximum validation instances for the refiner.
        test_refiner (StreamRefiner, optional): Test refiner to be used in the recipe.
        max_test_instances (int, optional): Maximum test instances for the refiner.
        demos_pool_size (int, optional): Size of the demos pool.
        num_demos (int, optional): Number of demos to be used.
        demos_pool_name (str, optional): Name of the demos pool. Default is "demos_pool".
        demos_taken_from (str, optional): Specifies from where the demos are taken. Default is "train".
        demos_field (str, optional): Field name for demos. Default is "demos".
        demos_removed_from_data (bool, optional): whether to remove the demos from the source data, Default is True
        sampler (Sampler, optional): The Sampler used to select the demonstrations when num_demos > 0.
        steps (List[StreamingOperator], optional): List of StreamingOperator objects to be used in the recipe.
        augmentor (Augmentor) : Augmentor to be used to pseudo randomly augment the source text
        instruction_card_index (int, optional): Index of instruction card to be used
            for preparing the recipe.
        template_card_index (int, optional): Index of template card to be used for
            preparing the recipe.

    Methods:
        prepare(): This overridden method is used for preparing the recipe
            by arranging all the steps, refiners, and renderers in a sequential manner.

    Raises:
        AssertionError: If both template and template_card_index are specified at the same time.
    """

    pass