Datasets:

ArXiv:
File size: 4,531 Bytes
b305aa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from typing import Dict, Iterable, List

from datasets import Features, Value

from .operator import (
    MultiStreamOperator,
    SequentialOperatorInitilizer,
    StreamInitializerOperator,
)
from .operators import (
    Apply,
    ApplyMetric,
    ApplyOperatorsField,
    FlattenInstances,
    MergeStreams,
    SplitByValue,
)
from .register import _reset_env_local_catalogs, register_all_artifacts
from .schema import UNITXT_DATASET_SCHEMA
from .stream import MultiStream, Stream


class MultiStreamScoreMean(MultiStreamOperator):
    def aggegate_results(self, multi_stream: MultiStream):
        scores = []
        for stream in multi_stream.values():
            instance = stream.peek()
            scores.append(instance["score"]["global"]["score"])

        from statistics import mean

        return mean(scores)

    def spread_results(self, stream: Stream, score: float):
        for instance in stream:
            instance["score"]["global"]["groups_mean_score"] = score
            yield instance

    def spread_results_one_stream(self, stream: Stream):
        for instance in stream:
            instance["score"]["global"]["groups_mean_score"] = instance["score"][
                "global"
            ]["score"]
            yield instance

    def process(self, multi_stream: MultiStream) -> MultiStream:
        result = {}

        # optimization in to avoid double calculation of metrics
        # when aggregating results, if there is only one stream.
        if len(multi_stream) == 1:
            for stream_name, stream in multi_stream.items():
                result[stream_name] = Stream(
                    self.spread_results_one_stream, gen_kwargs={"stream": stream}
                )
            return MultiStream(result)

        mean_score = self.aggegate_results(multi_stream)
        result = {}
        for stream_name, stream in multi_stream.items():
            result[stream_name] = Stream(
                self.spread_results, gen_kwargs={"stream": stream, "score": mean_score}
            )

        return MultiStream(result)


class FromPredictionsAndOriginalData(StreamInitializerOperator):
    def zip(self, predictions, references):
        for prediction, original in zip(predictions, references):
            yield {**original, "prediction": prediction}

    def process(
        self, predictions: List[str], references: Iterable, split_name: str = "all"
    ) -> MultiStream:
        return MultiStream(
            {
                split_name: Stream(
                    self.zip,
                    gen_kwargs={"predictions": predictions, "references": references},
                )
            }
        )


# The additional_inputs field in the schema is defined as
# Sequence({"key": Value(dtype="string"), "value": Value("string")})
# When receiving instances from this scheme, the keys and values are returned as two separate
# lists, and are converted to a dictionary.


def _from_key_value_pairs(key_value_list: Dict[str, list]) -> Dict[str, str]:
    return dict(zip(key_value_list["key"], key_value_list["value"]))


class MetricRecipe(SequentialOperatorInitilizer):
    calc_confidence_intervals: bool = True

    def prepare(self):
        register_all_artifacts()
        self.steps = [
            FromPredictionsAndOriginalData(),
            Apply(
                "additional_inputs",
                function=_from_key_value_pairs,
                to_field="additional_inputs",
            ),
            ApplyOperatorsField(
                operators_field="postprocessors",
            ),
            SplitByValue(["group"]),
            ApplyMetric(
                "metrics",
                calc_confidence_intervals=self.calc_confidence_intervals,
            ),
            MultiStreamScoreMean(),
            MergeStreams(),
        ]


UNITXT_METRIC_SCHEMA = Features(
    {"predictions": Value("string"), "references": dict(UNITXT_DATASET_SCHEMA)}
)


def _compute(
    predictions: List[str],
    references: Iterable,
    flatten: bool = False,
    split_name: str = "all",
    calc_confidence_intervals: bool = True,
):
    _reset_env_local_catalogs()
    register_all_artifacts()
    recipe = MetricRecipe(calc_confidence_intervals=calc_confidence_intervals)

    multi_stream = recipe(
        predictions=predictions, references=references, split_name=split_name
    )

    if flatten:
        operator = FlattenInstances()
        multi_stream = operator(multi_stream)

    stream = multi_stream[split_name]
    return list(stream)