File size: 24,888 Bytes
4654b39 55c22b4 fb1bd40 55c22b4 4654b39 fb1bd40 2f710b1 4654b39 55c22b4 2f710b1 fb1bd40 2f710b1 55c22b4 2f710b1 55c22b4 fb1bd40 e105954 2f710b1 55c22b4 fb1bd40 55c22b4 021d88d 2f710b1 021d88d 55c22b4 2f710b1 e105954 55c22b4 021d88d 55c22b4 2f710b1 55c22b4 2f710b1 55c22b4 2f710b1 55c22b4 2f710b1 55c22b4 2f710b1 021d88d 55c22b4 021d88d 55c22b4 2f710b1 021d88d 2f710b1 021d88d 55c22b4 2f710b1 55c22b4 7f58297 55c22b4 4654b39 7f58297 4654b39 55c22b4 4654b39 55c22b4 4654b39 630b4f5 4654b39 630b4f5 4654b39 630b4f5 4654b39 630b4f5 4654b39 55c22b4 2f710b1 55c22b4 021d88d 55c22b4 021d88d 55c22b4 021d88d 2f710b1 55c22b4 2f710b1 021d88d 55c22b4 2f710b1 7f58297 021d88d 55c22b4 7f58297 e105954 2f710b1 e105954 2f710b1 7f58297 e105954 7f58297 2f710b1 021d88d 55c22b4 2f710b1 021d88d 55c22b4 2f710b1 021d88d 55c22b4 2f710b1 021d88d 55c22b4 2f710b1 55c22b4 2f710b1 021d88d 55c22b4 2f710b1 021d88d 55c22b4 2f710b1 021d88d 55c22b4 021d88d 55c22b4 021d88d 55c22b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 |
import importlib
import inspect
import uuid
from abc import abstractmethod
from copy import deepcopy
from dataclasses import field
from itertools import zip_longest
from typing import (
Any,
Callable,
Dict,
Generator,
Iterable,
List,
Optional,
Tuple,
Union,
)
from .artifact import Artifact, fetch_artifact
from .dataclass import NonPositionalField
from .dict_utils import dict_delete, dict_get, dict_set, is_subpath
from .operator import (
MultiStream,
MultiStreamOperator,
PagedStreamOperator,
SingleStreamOperator,
SingleStreamReducer,
StreamingOperator,
StreamInitializerOperator,
StreamInstanceOperator,
StreamSource,
)
from .random_utils import random
from .stream import MultiStream, Stream
from .text_utils import nested_tuple_to_string
from .utils import flatten_dict
class FromIterables(StreamInitializerOperator):
"""
Creates a MultiStream from iterables.
Args:
iterables (Dict[str, Iterable]): A dictionary where each key-value pair represents a stream name and its corresponding iterable.
"""
def process(self, iterables: Dict[str, Iterable]) -> MultiStream:
return MultiStream.from_iterables(iterables)
class IterableSource(StreamSource):
iterables: Dict[str, Iterable]
def __call__(self) -> MultiStream:
return MultiStream.from_iterables(self.iterables)
class MapInstanceValues(StreamInstanceOperator):
"""A class used to map instance values into a stream.
This class is a type of StreamInstanceOperator,
it maps values of instances in a stream using predefined mappers.
Attributes:
mappers (Dict[str, Dict[str, str]]): The mappers to use for mapping instance values.
Keys are the names of the fields to be mapped, and values are dictionaries
that define the mapping from old values to new values.
strict (bool): If True, the mapping is applied strictly. That means if a value
does not exist in the mapper, it will raise a KeyError. If False, values
that are not present in the mapper are kept as they are.
"""
mappers: Dict[str, Dict[str, str]]
strict: bool = True
use_query = False
def verify(self):
# make sure the mappers are valid
for key, mapper in self.mappers.items():
assert isinstance(mapper, dict), f"Mapper for given field {key} should be a dict, got {type(mapper)}"
for k, v in mapper.items():
assert isinstance(k, str), f'Key "{k}" in mapper for field "{key}" should be a string, got {type(k)}'
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
for key, mapper in self.mappers.items():
value = dict_get(instance, key, use_dpath=self.use_query)
if value is not None:
value = str(value) # make sure the value is a string
if self.strict:
dict_set(instance, key, mapper[value], use_dpath=self.use_query)
else:
if value in mapper:
dict_set(instance, key, mapper[value], use_dpath=self.use_query)
return instance
class FlattenInstances(StreamInstanceOperator):
"""
Flattens each instance in a stream, making nested dictionary entries into top-level entries.
Args:
parent_key (str): A prefix to use for the flattened keys. Defaults to an empty string.
sep (str): The separator to use when concatenating nested keys. Defaults to "_".
"""
parent_key: str = ""
sep: str = "_"
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
return flatten_dict(instance, parent_key=self.parent_key, sep=self.sep)
class AddFields(StreamInstanceOperator):
"""
Adds specified fields to each instance in a stream.
Args:
fields (Dict[str, object]): The fields to add to each instance.
"""
fields: Dict[str, object]
use_query: bool = False
use_deepcopy: bool = False
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
if self.use_query:
for key, value in self.fields.items():
if self.use_deepcopy:
value = deepcopy(value)
dict_set(instance, key, value, use_dpath=self.use_query)
else:
if self.use_deepcopy:
self.fields = deepcopy(self.fields)
instance.update(self.fields)
return instance
class FieldOperator(StreamInstanceOperator):
"""
A general stream that processes the values of a field (or multiple ones
Args:
field (Optional[str]): The field to process, if only a single one is passed Defaults to None
to_field (Optional[str]): Field name to save, if only one field is to be saved, if None is passed the operator would happen in-place and replace "field" Defaults to None
field_to_field (Optional[Union[List[Tuple[str, str]], Dict[str, str]]]): Mapping from fields to process to their names after this process, duplicates are allowed. Defaults to None
process_every_value (bool): Processes the values in a list instead of the list as a value, similar to *var. Defaults to False
use_query (bool): Whether to use dpath style queries. Defaults to False
"""
field: Optional[str] = None
to_field: Optional[str] = None
field_to_field: Optional[Union[List[Tuple[str, str]], Dict[str, str]]] = None
process_every_value: bool = False
use_query: bool = False
get_default: Any = None
not_exist_ok: bool = False
def verify(self):
super().verify()
assert self.field is not None or self.field_to_field is not None, "Must supply a field to work on"
assert (
self.to_field is None or self.field_to_field is None
), f"Can not apply operator to create both on {self.to_field} and on the mapping from fields to fields {self.field_to_field}"
assert (
self.field is None or self.field_to_field is None
), f"Can not apply operator both on {self.field} and on the mapping from fields to fields {self.field_to_field}"
assert self._field_to_field, f"the from and to fields must be defined got: {self._field_to_field}"
@abstractmethod
def process_value(self, value: Any) -> Any:
pass
def prepare(self):
if self.to_field is None:
self.to_field = self.field
if self.field_to_field is None:
self._field_to_field = [(self.field, self.to_field)]
else:
try:
self._field_to_field = [(k, v) for k, v in self.field_to_field.items()]
except AttributeError:
self._field_to_field = self.field_to_field
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
for from_field, to_field in self._field_to_field:
try:
old_value = dict_get(
instance,
from_field,
use_dpath=self.use_query,
default=self.get_default,
not_exist_ok=self.not_exist_ok,
)
except TypeError as e:
raise TypeError(f"Failed to get {from_field} from {instance}")
if self.process_every_value:
new_value = [self.process_value(value) for value in old_value]
else:
new_value = self.process_value(old_value)
if self.use_query and is_subpath(from_field, to_field):
dict_delete(instance, from_field)
dict_set(instance, to_field, new_value, use_dpath=self.use_query, not_exist_ok=True)
return instance
class RenameFields(FieldOperator):
"""
Renames fields
"""
def process_value(self, value: Any) -> Any:
return value
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
res = super().process(instance=instance, stream_name=stream_name)
vals = [x[1] for x in self._field_to_field]
for key, _ in self._field_to_field:
if self.use_query and "/" in key:
continue
if key not in vals:
res.pop(key)
return res
class AddConstant(FieldOperator):
"""
Adds a number, similar to field + add
Args:
add (float): sum to add
"""
add: float
def process_value(self, value: Any) -> Any:
return value + self.add
class ShuffleFieldValues(FieldOperator):
"""
Shuffles an iterable value
"""
def process_value(self, value: Any) -> Any:
res = list(value)
random.shuffle(res)
return res
class JoinStr(FieldOperator):
"""
Joins a list of strings (contents of a field), similar to str.join()
Args:
separator (str): text to put between values
"""
separator: str = ","
def process_value(self, value: Any) -> Any:
return self.separator.join(str(x) for x in value)
class Apply(StreamInstanceOperator):
__allow_unexpected_arguments__ = True
function: Callable = NonPositionalField(required=True)
to_field: str = NonPositionalField(required=True)
def function_to_str(self, function: Callable) -> str:
parts = []
if hasattr(function, "__module__"):
parts.append(function.__module__)
if hasattr(function, "__qualname__"):
parts.append(function.__qualname__)
else:
parts.append(function.__name__)
result = ".".join(parts)
return result
def str_to_function(self, function_str: str) -> Callable:
splitted = function_str.split(".", 1)
if len(splitted) == 1:
return __builtins__[module_name]
else:
module_name, function_name = splitted
if module_name in __builtins__:
obj = __builtins__[module_name]
elif module_name in globals():
obj = globals()[module_name]
else:
obj = importlib.import_module(module_name)
for part in function_name.split("."):
obj = getattr(obj, part)
return obj
def prepare(self):
super().prepare()
if isinstance(self.function, str):
self.function = self.str_to_function(self.function)
self._init_dict["function"] = self.function_to_str(self.function)
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
argv = [instance[arg] for arg in self._argv]
kwargs = {key: instance[val] for key, val in self._kwargs}
result = self.function(*argv, **kwargs)
instance[self.to_field] = result
return instance
class ListFieldValues(StreamInstanceOperator):
"""
Concatanates values of multiple fields into a list to list(fields)
"""
fields: str
to_field: str
use_query: bool = False
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
values = []
for field in self.fields:
values.append(dict_get(instance, field, use_dpath=self.use_query))
instance[self.to_field] = values
return instance
class ZipFieldValues(StreamInstanceOperator):
"""
Zips values of multiple fields similar to list(zip(*fields))
"""
fields: str
to_field: str
longest: bool = False
use_query: bool = False
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
values = []
for field in self.fields:
values.append(dict_get(instance, field, use_dpath=self.use_query))
if self.longest:
zipped = zip_longest(*values)
else:
zipped = zip(*values)
instance[self.to_field] = list(zipped)
return instance
class IndexOf(StreamInstanceOperator):
"""
Finds the location of one value in another (iterable) value similar to to_field=search_in.index(index_of)
"""
search_in: str
index_of: str
to_field: str
use_query: bool = False
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
lst = dict_get(instance, self.search_in, use_dpath=self.use_query)
item = dict_get(instance, self.index_of, use_dpath=self.use_query)
instance[self.to_field] = lst.index(item)
return instance
class TakeByField(StreamInstanceOperator):
"""
Takes value from one field based on another field similar to field[index]
"""
field: str
index: str
to_field: str = None
use_query: bool = False
def prepare(self):
if self.to_field is None:
self.to_field = self.field
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
value = dict_get(instance, self.field, use_dpath=self.use_query)
index_value = dict_get(instance, self.index, use_dpath=self.use_query)
instance[self.to_field] = value[index_value]
return instance
class CopyFields(FieldOperator):
"""
Copies specified fields from one field to another.
Args:
field_to_field (Union[List[List], Dict[str, str]]): A list of lists, where each sublist contains the source field and the destination field, or a dictionary mapping source fields to destination fields.
use_dpath (bool): Whether to use dpath for accessing fields. Defaults to False.
"""
def process_value(self, value: Any) -> Any:
return value
class AddID(StreamInstanceOperator):
id_field_name: str = "id"
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
instance[self.id_field_name] = str(uuid.uuid4()).replace("-", "")
return instance
class CastFields(StreamInstanceOperator):
"""
Casts specified fields to specified types.
Args:
types (Dict[str, str]): A dictionary mapping fields to their new types.
nested (bool): Whether to cast nested fields. Defaults to False.
fields (Dict[str, str]): A dictionary mapping fields to their new types.
defaults (Dict[str, object]): A dictionary mapping types to their default values for cases of casting failure.
"""
types = {
"int": int,
"float": float,
"str": str,
"bool": bool,
}
fields: Dict[str, str] = field(default_factory=dict)
failure_defaults: Dict[str, object] = field(default_factory=dict)
use_nested_query: bool = False
cast_multiple: bool = False
def _cast_single(self, value, type, field):
try:
return self.types[type](value)
except:
if field not in self.failure_defaults:
raise ValueError(
f'Failed to cast field "{field}" with value {value} to type "{type}", and no default value is provided.'
)
return self.failure_defaults[field]
def _cast_multiple(self, values, type, field):
values = [self._cast_single(value, type, field) for value in values]
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
for field, type in self.fields.items():
value = dict_get(instance, field, use_dpath=self.use_nested_query)
if self.cast_multiple:
casted_value = self._cast_multiple(value, type, field)
else:
casted_value = self._cast_single(value, type, field)
dict_set(instance, field, casted_value, use_dpath=self.use_nested_query)
return instance
def recursive_divide(instance, divisor, strict=False):
if isinstance(instance, dict):
for key, value in instance.items():
instance[key] = recursive_divide(value, divisor, strict=strict)
elif isinstance(instance, list):
for i, value in enumerate(instance):
instance[i] = recursive_divide(value, divisor, strict=strict)
elif isinstance(instance, float):
instance /= divisor
elif strict:
raise ValueError(f"Cannot divide instance of type {type(instance)}")
return instance
class DivideAllFieldsBy(StreamInstanceOperator):
divisor: float = 1.0
strict: bool = False
recursive: bool = True
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
return recursive_divide(instance, self.divisor, strict=self.strict)
class ArtifactFetcherMixin:
"""
Provides a way to fetch and cache artifacts in the system.
Args:
cache (Dict[str, Artifact]): A cache for storing fetched artifacts.
"""
cache: Dict[str, Artifact] = {}
@classmethod
def get_artifact(cls, artifact_identifier: str) -> Artifact:
if artifact_identifier not in cls.cache:
artifact, artifactory = fetch_artifact(artifact_identifier)
cls.cache[artifact_identifier] = artifact
return cls.cache[artifact_identifier]
class ApplyOperatorsField(StreamInstanceOperator, ArtifactFetcherMixin):
"""
Applies value operators to each instance in a stream based on specified fields.
Args:
value_field (str): The field containing the value to be operated on.
operators_field (str): The field containing the operators to be applied.
default_operators (List[str]): A list of default operators to be used if no operators are found in the instance.
"""
inputs_fields: str
operators_field: str
default_operators: List[str] = None
fields_to_treat_as_list: List[str] = NonPositionalField(default_factory=list)
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
operator_names = instance.get(self.operators_field)
if operator_names is None:
assert (
self.default_operators is not None
), f"No operators found in {self.field} field and no default operators provided"
operator_names = self.default_operators
if isinstance(operator_names, str):
operator_names = [operator_names]
for name in operator_names:
operator = self.get_artifact(name)
for field in self.inputs_fields:
value = instance[field]
if field in self.fields_to_treat_as_list:
instance[field] = [operator.process(v) for v in value]
else:
instance[field] = operator.process(instance[field])
return instance
class FilterByValues(SingleStreamOperator):
"""
Filters a stream, yielding only instances that match specified values.
Args:
values (Dict[str, Any]): The values that instances should match to be included in the output.
"""
values: Dict[str, Any]
def process(self, stream: Stream, stream_name: str = None) -> Generator:
for instance in stream:
if all(instance[key] == value for key, value in self.values.items()):
yield instance
class Unique(SingleStreamReducer):
"""
Reduces a stream to unique instances based on specified fields.
Args:
fields (List[str]): The fields that should be unique in each instance.
"""
fields: List[str] = field(default_factory=list)
@staticmethod
def to_tuple(instance: dict, fields: List[str]) -> tuple:
result = []
for field in fields:
value = instance[field]
if isinstance(value, list):
value = tuple(value)
result.append(value)
return tuple(result)
def process(self, stream: Stream) -> Stream:
seen = set()
for instance in stream:
values = self.to_tuple(instance, self.fields)
if values not in seen:
seen.add(values)
return list(seen)
class SplitByValue(MultiStreamOperator):
"""
Splits a MultiStream into multiple streams based on unique values in specified fields.
Args:
fields (List[str]): The fields to use when splitting the MultiStream.
"""
fields: List[str] = field(default_factory=list)
def process(self, multi_stream: MultiStream) -> MultiStream:
uniques = Unique(fields=self.fields)(multi_stream)
result = {}
for stream_name, stream in multi_stream.items():
stream_unique_values = uniques[stream_name]
for unique_values in stream_unique_values:
filtering_values = {field: value for field, value in zip(self.fields, unique_values)}
filtered_streams = FilterByValues(values=filtering_values)._process_single_stream(stream)
filtered_stream_name = stream_name + "_" + nested_tuple_to_string(unique_values)
result[filtered_stream_name] = filtered_streams
return MultiStream(result)
class ApplyStreamOperatorsField(SingleStreamOperator, ArtifactFetcherMixin):
"""
Applies stream operators to a stream based on specified fields in each instance.
Args:
field (str): The field containing the operators to be applied.
reversed (bool): Whether to apply the operators in reverse order.
"""
field: str
reversed: bool = False
def process(self, stream: Stream, stream_name: str = None) -> Generator:
first_instance = stream.peak()
operators = first_instance.get(self.field, [])
if isinstance(operators, str):
operators = [operators]
if self.reversed:
operators = list(reversed(operators))
for operator_name in operators:
operator = self.get_artifact(operator_name)
assert isinstance(operator, StreamingOperator), f"Operator {operator_name} must be a SingleStreamOperator"
stream = operator(MultiStream({"tmp": stream}))["tmp"]
yield from stream
class AddFieldNamePrefix(StreamInstanceOperator):
"""
Adds a prefix to each field name in each instance of a stream.
Args:
prefix_dict (Dict[str, str]): A dictionary mapping stream names to prefixes.
"""
prefix_dict: Dict[str, str]
def prepare(self):
return super().prepare()
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
return {self.prefix_dict[stream_name] + key: value for key, value in instance.items()}
class MergeStreams(MultiStreamOperator):
"""
Merges multiple streams into a single stream.
Args:
new_stream_name (str): The name of the new stream resulting from the merge.
add_origin_stream_name (bool): Whether to add the origin stream name to each instance.
origin_stream_name_field_name (str): The field name for the origin stream name.
"""
new_stream_name: str = "all"
add_origin_stream_name: bool = True
origin_stream_name_field_name: str = "origin"
def merge(self, multi_stream):
for stream_name, stream in multi_stream.items():
for instance in stream:
if self.add_origin_stream_name:
instance[self.origin_stream_name_field_name] = stream_name
yield instance
def process(self, multi_stream: MultiStream) -> MultiStream:
return MultiStream({self.new_stream_name: Stream(self.merge, gen_kwargs={"multi_stream": multi_stream})})
class Shuffle(PagedStreamOperator):
"""
Shuffles the order of instances in each page of a stream.
Args:
page_size (int): The size of each page in the stream. Defaults to 1000.
"""
def process(self, page: List[Dict], stream_name: str = None) -> Generator:
random.shuffle(page)
yield from page
class EncodeLabels(StreamInstanceOperator):
"""
Encode labels of specified fields together a into integers.
Args:
fields (List[str]): The fields to encode together.
"""
fields: List[str]
def _process_multi_stream(self, multi_stream: MultiStream) -> MultiStream:
self.encoder = {}
return super()._process_multi_stream(multi_stream)
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
for field in self.fields:
values = dict_get(instance, field, use_dpath=True)
if not isinstance(values, list):
values = [values]
for value in values:
if value not in self.encoder:
self.encoder[value] = len(self.encoder)
new_values = [self.encoder[value] for value in values]
dict_set(instance, field, new_values, use_dpath=True, set_multiple=True)
return instance
|