Datasets:

ArXiv:
File size: 71,353 Bytes
e3ec59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108ea73
4654b39
e3ec59e
 
55c22b4
 
03fc61c
55c22b4
fb1bd40
55c22b4
e3ec59e
4654b39
 
 
 
 
 
 
 
 
 
 
fb1bd40
2f710b1
03fc61c
55c22b4
2f710b1
fb1bd40
2f710b1
55c22b4
83b5460
2f710b1
 
55c22b4
fb1bd40
 
e105954
2f710b1
e3ec59e
03fc61c
55c22b4
e3ec59e
021d88d
2f710b1
 
 
e3ec59e
 
 
 
 
021d88d
 
55c22b4
2f710b1
 
 
 
e105954
e3ec59e
 
 
 
 
 
 
 
 
 
 
 
 
e105954
 
 
 
 
 
55c22b4
e3ec59e
55c22b4
 
 
 
 
 
 
 
 
 
 
03fc61c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3ec59e
 
 
 
 
021d88d
55c22b4
2f710b1
 
03fc61c
 
2f710b1
 
 
 
03fc61c
 
 
 
 
 
 
 
 
 
 
55c22b4
 
 
03fc61c
 
 
 
e3ec59e
 
 
 
 
 
 
 
 
 
 
03fc61c
55c22b4
2f710b1
e3ec59e
 
 
 
 
 
 
 
 
 
 
2f710b1
 
03fc61c
021d88d
 
 
 
 
55c22b4
021d88d
 
55c22b4
03fc61c
 
 
021d88d
2f710b1
 
 
03fc61c
021d88d
 
 
03fc61c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3ec59e
021d88d
55c22b4
2f710b1
55c22b4
 
 
03fc61c
 
 
55c22b4
 
 
 
 
 
 
 
 
 
 
 
f5d5e17
e3ec59e
f5d5e17
 
03fc61c
f5d5e17
 
 
 
03fc61c
 
 
 
 
f5d5e17
 
 
55c22b4
e3ec59e
03fc61c
55c22b4
e3ec59e
 
 
 
 
 
 
 
 
 
 
 
 
55c22b4
03fc61c
e3ec59e
 
 
55c22b4
 
 
 
e3ec59e
55c22b4
 
7f58297
 
55c22b4
 
 
 
03fc61c
 
 
55c22b4
 
 
 
 
e3ec59e
 
03fc61c
e3ec59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55c22b4
 
 
 
 
 
e3ec59e
 
 
 
 
 
 
 
 
 
55c22b4
e3ec59e
 
 
55c22b4
e3ec59e
 
 
 
 
55c22b4
03fc61c
 
 
55c22b4
4654b39
7f58297
 
 
 
 
 
 
03fc61c
 
 
 
 
 
 
 
 
 
 
 
 
e3ec59e
55c22b4
03fc61c
 
 
 
 
 
 
55c22b4
 
 
4654b39
e3ec59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4654b39
 
 
 
03fc61c
 
 
4654b39
e3ec59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4654b39
 
 
 
e3ec59e
03fc61c
 
e3ec59e
4654b39
03fc61c
 
 
 
 
 
 
 
 
 
4654b39
03fc61c
 
 
4654b39
 
03fc61c
 
 
 
 
 
 
 
 
 
 
 
4654b39
03fc61c
4654b39
03fc61c
 
 
 
4654b39
03fc61c
 
 
 
4654b39
03fc61c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3ec59e
03fc61c
 
e3ec59e
 
 
 
 
 
03fc61c
 
 
 
 
7d76f68
 
03fc61c
 
 
 
 
 
 
 
 
 
 
4654b39
03fc61c
 
 
 
 
 
 
e3ec59e
03fc61c
 
e3ec59e
03fc61c
e3ec59e
03fc61c
 
 
 
 
e3ec59e
 
03fc61c
 
e3ec59e
03fc61c
e3ec59e
 
 
 
 
 
03fc61c
 
e3ec59e
 
 
 
 
 
03fc61c
4654b39
 
e3ec59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03fc61c
 
 
e3ec59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03fc61c
e3ec59e
 
 
 
 
 
 
03fc61c
 
e3ec59e
 
 
03fc61c
e3ec59e
 
 
 
03fc61c
e3ec59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03fc61c
 
 
 
e3ec59e
 
 
 
 
 
 
 
 
 
03fc61c
 
 
e3ec59e
03fc61c
4654b39
 
e3ec59e
 
4654b39
 
 
55c22b4
03fc61c
 
55c22b4
 
 
 
 
 
 
 
 
 
4654b39
03fc61c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4654b39
 
 
 
 
630b4f5
 
 
 
 
 
 
 
 
03fc61c
4654b39
 
 
 
03fc61c
 
 
 
 
 
 
4654b39
03fc61c
 
 
 
4654b39
 
 
 
 
630b4f5
4654b39
03fc61c
 
 
4654b39
 
 
 
 
 
 
 
 
 
03fc61c
4654b39
03fc61c
4654b39
 
 
03fc61c
 
 
4654b39
03fc61c
 
4654b39
 
 
 
55c22b4
e3ec59e
 
 
 
55c22b4
e3ec59e
 
 
 
 
 
 
55c22b4
 
 
2f710b1
03fc61c
 
 
55c22b4
03fc61c
 
55c22b4
 
 
 
 
021d88d
 
 
55c22b4
e3ec59e
55c22b4
 
 
 
 
021d88d
03fc61c
 
 
55c22b4
 
 
021d88d
2f710b1
 
55c22b4
e3ec59e
55c22b4
 
 
 
 
 
 
 
 
 
03fc61c
 
 
55c22b4
 
 
 
 
 
83b5460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55c22b4
e3ec59e
55c22b4
e3ec59e
55c22b4
e3ec59e
 
 
 
 
 
 
 
 
 
 
 
 
 
55c22b4
 
 
 
 
 
 
e3ec59e
 
55c22b4
 
03fc61c
 
 
55c22b4
 
 
 
 
03fc61c
55c22b4
 
e3ec59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55c22b4
 
 
 
 
e3ec59e
 
 
 
55c22b4
 
 
 
03fc61c
55c22b4
 
 
03fc61c
55c22b4
 
 
e3ec59e
55c22b4
03fc61c
 
 
 
 
e3ec59e
 
 
 
03fc61c
55c22b4
03fc61c
 
 
 
55c22b4
 
 
e3ec59e
 
55c22b4
e3ec59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55c22b4
 
 
e3ec59e
 
 
 
 
 
 
 
 
 
 
 
 
55c22b4
03fc61c
 
 
e3ec59e
55c22b4
 
2f710b1
03fc61c
021d88d
 
 
 
55c22b4
2f710b1
 
 
 
 
 
 
 
 
 
7f58297
03fc61c
021d88d
 
83b5460
 
 
 
021d88d
55c22b4
e3ec59e
83b5460
 
 
 
 
e105954
e3ec59e
 
2f710b1
 
 
03fc61c
 
 
2f710b1
 
 
 
e3ec59e
2f710b1
 
 
 
83b5460
2f710b1
83b5460
 
 
2f710b1
 
e3ec59e
 
 
 
03fc61c
 
e3ec59e
 
 
 
 
 
 
 
 
 
021d88d
03fc61c
e3ec59e
 
 
 
 
 
 
 
 
 
 
 
 
03fc61c
 
e3ec59e
03fc61c
e3ec59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03fc61c
e3ec59e
03fc61c
e3ec59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03fc61c
 
e3ec59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03fc61c
e3ec59e
03fc61c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3ec59e
03fc61c
 
 
e3ec59e
03fc61c
 
 
 
 
e3ec59e
03fc61c
 
 
e3ec59e
03fc61c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83b5460
03fc61c
 
 
 
 
 
 
 
 
 
 
83b5460
 
03fc61c
83b5460
03fc61c
83b5460
03fc61c
 
83b5460
 
03fc61c
 
83b5460
 
 
03fc61c
 
 
 
 
 
 
83b5460
03fc61c
 
 
 
 
 
 
e3ec59e
 
03fc61c
 
e3ec59e
03fc61c
 
2f710b1
e3ec59e
 
 
2f710b1
 
03fc61c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3ec59e
03fc61c
 
 
 
 
 
 
 
 
e3ec59e
021d88d
03fc61c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
021d88d
 
 
 
55c22b4
2f710b1
 
 
 
 
03fc61c
 
2f710b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03fc61c
021d88d
 
 
 
55c22b4
2f710b1
 
 
 
 
 
 
 
 
 
03fc61c
e3ec59e
 
03fc61c
 
 
 
2f710b1
 
 
 
 
 
03fc61c
021d88d
 
 
 
 
55c22b4
2f710b1
 
 
03fc61c
e3ec59e
2f710b1
 
 
 
 
 
 
 
 
 
03fc61c
 
 
55c22b4
 
2f710b1
 
 
 
03fc61c
 
 
 
 
 
021d88d
03fc61c
 
 
 
 
 
 
e3ec59e
03fc61c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f710b1
03fc61c
021d88d
 
 
 
 
 
55c22b4
03fc61c
2f710b1
 
 
 
 
 
03fc61c
 
 
 
 
2f710b1
 
03fc61c
 
 
 
 
 
 
021d88d
55c22b4
021d88d
03fc61c
021d88d
e3ec59e
021d88d
 
55c22b4
e3ec59e
 
 
 
 
 
03fc61c
e3ec59e
55c22b4
 
 
 
e3ec59e
 
 
 
55c22b4
 
 
e3ec59e
 
 
 
 
 
 
 
 
 
55c22b4
 
 
 
 
 
 
 
03fc61c
 
 
 
 
55c22b4
 
 
 
 
 
03fc61c
 
 
55c22b4
 
108ea73
 
 
e3ec59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108ea73
e3ec59e
108ea73
03fc61c
108ea73
 
 
 
 
 
 
03fc61c
108ea73
e3ec59e
 
 
 
 
108ea73
e3ec59e
 
108ea73
 
e3ec59e
108ea73
e3ec59e
 
 
 
 
108ea73
 
 
 
 
03fc61c
 
 
108ea73
03fc61c
108ea73
 
 
 
 
03fc61c
 
 
108ea73
 
 
 
03fc61c
 
 
108ea73
 
 
 
 
 
 
 
 
 
 
e3ec59e
 
 
 
83b5460
 
e3ec59e
 
 
 
 
83b5460
 
 
 
 
e3ec59e
 
 
108ea73
e3ec59e
108ea73
 
 
03fc61c
 
108ea73
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
"""This section describes unitxt operators.

Operators: Building Blocks of Unitxt Processing Pipelines
==============================================================

Within the Unitxt framework, operators serve as the foundational elements used to assemble processing pipelines.
Each operator is designed to perform specific manipulations on dictionary structures within a stream.
These operators are callable entities that receive a MultiStream as input.
The output is a MultiStream, augmented with the operator's manipulations, which are then systematically applied to each instance in the stream when pulled.

Creating Custom Operators
-------------------------------
To enhance the functionality of Unitxt, users are encouraged to develop custom operators.
This can be achieved by inheriting from any of the existing operators listed below or from one of the fundamental :class:`base operators<unitxt.operator>`.
The primary task in any operator development is to implement the `process` function, which defines the unique manipulations the operator will perform.

General or Specelized Operators
--------------------------------
Some operators are specielized in specific task such as:

- :class:`loaders<unitxt.loaders>` for loading data.
- :class:`splitters<unitxt.splitters>` for fixing data splits.

Other specelized operators are used by unitxt internally:

- :class:`templates<unitxt.templates>` for verbalizing data examples.
- :class:`formats<unitxt.formats>` for preparing data for models.

The rest of this section is dedicated for general operators.

General Operaotrs List:
------------------------
"""
import collections
import importlib
import operator
import os
import uuid
from abc import abstractmethod
from collections import Counter
from copy import deepcopy
from dataclasses import field
from itertools import zip_longest
from random import Random
from typing import (
    Any,
    Callable,
    Dict,
    Generator,
    Iterable,
    List,
    Optional,
    Tuple,
    Union,
)

from .artifact import Artifact, fetch_artifact
from .dataclass import NonPositionalField
from .dict_utils import dict_delete, dict_get, dict_set, is_subpath
from .operator import (
    MultiStream,
    MultiStreamOperator,
    PagedStreamOperator,
    SequentialOperator,
    SingleStreamOperator,
    SingleStreamReducer,
    StreamingOperator,
    StreamInitializerOperator,
    StreamInstanceOperator,
    StreamSource,
)
from .random_utils import new_random_generator
from .stream import Stream
from .text_utils import nested_tuple_to_string
from .type_utils import isoftype
from .utils import flatten_dict


class FromIterables(StreamInitializerOperator):
    """Creates a MultiStream from a dict of named iterables.

    Example:
        operator = FromIterables()
        ms = operator.process(iterables)

    """

    def process(self, iterables: Dict[str, Iterable]) -> MultiStream:
        return MultiStream.from_iterables(iterables)


class IterableSource(StreamSource):
    """Creates a MultiStream from a dict of named iterables.

    It is a callable.

    Args:
        iterables (Dict[str, Iterable]): A dictionary mapping stream names to iterables.

    Example:
        operator =  IterableSource(input_dict)
        ms = operator()

    """

    iterables: Dict[str, Iterable]

    def __call__(self) -> MultiStream:
        return MultiStream.from_iterables(self.iterables)


class MapInstanceValues(StreamInstanceOperator):
    """A class used to map instance values into other values.

    This class is a type of StreamInstanceOperator,
    it maps values of instances in a stream using predefined mappers.

    Attributes:
        mappers (Dict[str, Dict[str, str]]): The mappers to use for mapping instance values.
            Keys are the names of the fields to be mapped, and values are dictionaries
            that define the mapping from old values to new values.
        strict (bool): If True, the mapping is applied strictly. That means if a value
            does not exist in the mapper, it will raise a KeyError. If False, values
            that are not present in the mapper are kept as they are.
        process_every_value (bool): If True, all fields to be mapped should be lists, and the mapping
            is to be applied to their individual elements. If False, mapping is only applied to a field
            containing a single value.

    Examples:
        MapInstanceValues(mappers={"a": {"1": "hi", "2": "bye"}})
        replaces '1' with 'hi' and '2' with 'bye' in field 'a' in all instances of all streams:
        instance {"a":"1", "b": 2} becomes {"a":"hi", "b": 2}.

        MapInstanceValues(mappers={"a": {"1": "hi", "2": "bye"}}, process_every_element=True)
        Assuming field 'a' is a list of values, potentially including "1"-s and "2"-s, this replaces
        each such "1" with "hi" and "2" -- with "bye" in all instances of all streams:
        instance {"a": ["1", "2"], "b": 2} becomes {"a": ["hi", "bye"], "b": 2}.

        MapInstanceValues(mappers={"a": {"1": "hi", "2": "bye"}}, strict=True)
        To ensure that all values of field 'a' are mapped in every instance, use strict=True.
        Input instance {"a":"3", "b": 2} will raise an exception per the above call,
        because "3" is not a key in the mapper of "a".

        MapInstanceValues(mappers={"a": {str([1,2,3,4]): 'All', str([]): 'None'}}, strict=True)
        replaces a list [1,2,3,4] with the string 'All' and an empty list by string 'None'.
        Note that mapped values are defined by their string representation, so mapped values
        must be converted to strings.
    """

    mappers: Dict[str, Dict[str, str]]
    strict: bool = True
    use_query: bool = False
    process_every_value: bool = False

    def verify(self):
        # make sure the mappers are valid
        for key, mapper in self.mappers.items():
            assert isinstance(
                mapper, dict
            ), f"Mapper for given field {key} should be a dict, got {type(mapper)}"
            for k in mapper.keys():
                assert isinstance(
                    k, str
                ), f'Key "{k}" in mapper for field "{key}" should be a string, got {type(k)}'

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        for key, mapper in self.mappers.items():
            value = dict_get(instance, key, use_dpath=self.use_query)
            if value is not None:
                if (self.process_every_value is True) and (not isinstance(value, list)):
                    raise ValueError(
                        f"'process_every_field' == True is allowed only when all fields which have mappers, i.e., {list(self.mappers.keys())} are lists. Instace = {instance}"
                    )
                if isinstance(value, list) and self.process_every_value:
                    for i, val in enumerate(value):
                        value[i] = self.get_mapped_value(instance, key, mapper, val)
                else:
                    value = self.get_mapped_value(instance, key, mapper, value)
                dict_set(
                    instance,
                    key,
                    value,
                    use_dpath=self.use_query,
                )

        return instance

    def get_mapped_value(self, instance, key, mapper, val):
        val_as_str = str(val)  # make sure the value is a string
        if self.strict and (val_as_str not in mapper):
            raise KeyError(
                f"value '{val}' in instance '{instance}' is not found in mapper '{mapper}', associated with field '{key}'."
            )
        # By default deep copy the value in mapper to avoid shared modifications
        if val_as_str in mapper:
            return deepcopy(mapper[val_as_str])
        return val


class FlattenInstances(StreamInstanceOperator):
    """Flattens each instance in a stream, making nested dictionary entries into top-level entries.

    Args:
        parent_key (str): A prefix to use for the flattened keys. Defaults to an empty string.
        sep (str): The separator to use when concatenating nested keys. Defaults to "_".
    """

    parent_key: str = ""
    sep: str = "_"

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        return flatten_dict(instance, parent_key=self.parent_key, sep=self.sep)


class AddFields(StreamInstanceOperator):
    """Adds specified fields to each instance in a given stream or all streams (default) If fields exist, updates them.

    Args:
        fields (Dict[str, object]): The fields to add to each instance.
        use_query (bool) : Use '/' to access inner fields
        use_deepcopy (bool) : Deep copy the input value to avoid later modifications

    Examples:
        # Add a 'classes' field with a value of a list "positive" and "negative" to all streams
        AddFields(fields={"classes": ["positive","negatives"]})

        # Add a 'start' field under the 'span' field with a value of 0 to all streams
        AddFields(fields={"span/start": 0}

        # Add a 'classes' field with a value of a list "positive" and "negative" to 'train' stream
        AddFields(fields={"classes": ["positive","negatives"], apply_to_stream=["train"]})

        # Add a 'classes' field on a given list, prevent modification of original list
        # from changing the instance.
        AddFields(fields={"classes": alist}), use_deepcopy=True)
        # if now alist is modified, still the instances remain intact.
    """

    fields: Dict[str, object]
    use_query: bool = False
    use_deepcopy: bool = False

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        if self.use_query:
            for key, value in self.fields.items():
                if self.use_deepcopy:
                    value = deepcopy(value)
                dict_set(instance, key, value, use_dpath=self.use_query)
        else:
            if self.use_deepcopy:
                self.fields = deepcopy(self.fields)
            instance.update(self.fields)
        return instance


class RemoveFields(StreamInstanceOperator):
    """Remove specified fields from each instance in a stream.

    Args:
        fields (List[str]): The fields to remove from each instance.
    """

    fields: List[str]

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        for field_name in self.fields:
            del instance[field_name]
        return instance


class FieldOperator(StreamInstanceOperator):
    """A general stream instance operator that processes the values of a field (or multiple ones).

    Args:
        field (Optional[str]): The field to process, if only a single one is passed. Defaults to None
        to_field (Optional[str]): Field name to save result into, if only one field is processed, if None is passed the
          operation would happen in-place and its result would replace the value of "field". Defaults to None
        field_to_field (Optional[Union[List[List[str]], Dict[str, str]]]): Mapping from names of fields to process,
          to names of fields to save the results into. Inner List, if used, should be of length 2.
          A field is processed by feeding its value into method 'process_value' and storing the result in to_field that
          is mapped to the field.
          When the type of argument 'field_to_field' is List, the order by which the fields are processed is their order
          in the (outer) List. But when the type of argument 'field_to_field' is Dict, there is no uniquely determined
          order. The end result might depend on that order if either (1) two different fields are mapped to the same
          to_field, or (2) a field shows both as a key and as a value in different mappings.
          The operator throws an AssertionError in either of these cases.
          field_to_field defaults to None
        process_every_value (bool): Processes the values in a list instead of the list as a value, similar to *var. Defaults to False
        use_query (bool): Whether to use dpath style queries. Defaults to False.

        Note: if 'field' and 'to_field' (or both members of a pair in 'field_to_field') are equal (or share a common
        prefix if 'use_query'=True), then the result of the operation is saved within 'field'
    """

    field: Optional[str] = None
    to_field: Optional[str] = None
    field_to_field: Optional[Union[List[List[str]], Dict[str, str]]] = None
    process_every_value: bool = False
    use_query: bool = False
    get_default: Any = None
    not_exist_ok: bool = False

    def verify(self):
        super().verify()

        assert (
            self.field is not None or self.field_to_field is not None
        ), "Must supply a field to work on"
        assert (
            self.to_field is None or self.field_to_field is None
        ), f"Can not apply operator to create both on {self.to_field} and on the mapping from fields to fields {self.field_to_field}"
        assert (
            self.field is None or self.field_to_field is None
        ), f"Can not apply operator both on {self.field} and on the from fields in the mapping {self.field_to_field}"
        assert self._field_to_field, f"the from and to fields must be defined or implied from the other inputs got: {self._field_to_field}"
        assert (
            len(self._field_to_field) > 0
        ), f"'input argument 'field_to_field' should convey at least one field to process. Got {self.field_to_field}"
        # self._field_to_field is built explicitly by pairs, or copied from argument 'field_to_field'
        if self.field_to_field is None:
            return
        # for backward compatibility also allow list of tupples of two strings
        if isoftype(self.field_to_field, List[List[str]]) or isoftype(
            self.field_to_field, List[Tuple[str, str]]
        ):
            for pair in self._field_to_field:
                assert (
                    len(pair) == 2
                ), f"when 'field_to_field' is defined as a list of lists, the inner lists should all be of length 2. {self.field_to_field}"
            # order of field processing is uniquely determined by the input field_to_field when a list
            return
        if isoftype(self.field_to_field, Dict[str, str]):
            if len(self.field_to_field) < 2:
                return
            for ff, tt in self.field_to_field.items():
                for f, t in self.field_to_field.items():
                    if f == ff:
                        continue
                    assert (
                        t != ff
                    ), f"In input argument 'field_to_field': {self.field_to_field}, field {f} is mapped to field {t}, while the latter is mapped to {tt}. Whether {f} or {t} is processed first might impact end result."
                    assert (
                        tt != t
                    ), f"In input argument 'field_to_field': {self.field_to_field}, two different fields: {ff} and {f} are mapped to field {tt}. Whether {ff} or {f} is processed last might impact end result."
            return
        raise ValueError(
            "Input argument 'field_to_field': {self.field_to_field} is neither of type List{List[str]] nor of type Dict[str, str]."
        )

    @abstractmethod
    def process_value(self, value: Any) -> Any:
        pass

    def prepare(self):
        super().prepare()

        # prepare is invoked before verify, hence must make some checks here, before the changes done here
        assert (
            (self.field is None) != (self.field_to_field is None)
        ), "Must uniquely define the field to work on, through exactly one of either 'field' or 'field_to_field'"
        assert (
            self.to_field is None or self.field_to_field is None
        ), f"Can not apply operator to create both {self.to_field} and the to fields in the mapping {self.field_to_field}"

        if self.field_to_field is None:
            self._field_to_field = [
                (self.field, self.to_field if self.to_field is not None else self.field)
            ]
        else:
            self._field_to_field = (
                list(self.field_to_field.items())
                if isinstance(self.field_to_field, dict)
                else self.field_to_field
            )

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        for from_field, to_field in self._field_to_field:
            try:
                old_value = dict_get(
                    instance,
                    from_field,
                    use_dpath=self.use_query,
                    default=self.get_default,
                    not_exist_ok=self.not_exist_ok,
                )
            except Exception as e:
                raise ValueError(
                    f"Failed to get '{from_field}' from {instance} due to : {e}"
                ) from e
            try:
                if self.process_every_value:
                    new_value = [self.process_value(value) for value in old_value]
                else:
                    new_value = self.process_value(old_value)
            except Exception as e:
                raise ValueError(
                    f"Failed to process '{from_field}' from {instance} due to : {e}"
                ) from e
            if is_subpath(from_field, to_field) or is_subpath(to_field, from_field):
                dict_delete(instance, from_field)
            dict_set(
                instance,
                to_field,
                new_value,
                use_dpath=self.use_query,
                not_exist_ok=True,
            )
        return instance


class RenameFields(FieldOperator):
    """Renames fields.

    Move value from one field to another, potentially, if 'use_query'=True, from one branch into another.
    Remove the from field, potentially part of it in case of use_query.

    Examples:
        RenameFields(field_to_field={"b": "c"})
        will change inputs [{"a": 1, "b": 2}, {"a": 2, "b": 3}] to [{"a": 1, "c": 2}, {"a": 2, "c": 3}]

        RenameFields(field_to_field={"b": "c/d"}, use_query=True)
        will change inputs [{"a": 1, "b": 2}, {"a": 2, "b": 3}] to [{"a": 1, "c": {"d": 2}}, {"a": 2, "c": {"d": 3}}]

        RenameFields(field_to_field={"b": "b/d"}, use_query=True)
        will change inputs [{"a": 1, "b": 2}, {"a": 2, "b": 3}] to [{"a": 1, "b": {"d": 2}}, {"a": 2, "b": {"d": 3}}]

        RenameFields(field_to_field={"b/c/e": "b/d"}, use_query=True)
        will change inputs [{"a": 1, "b": {"c": {"e": 2, "f": 20}}}] to [{"a": 1, "b": {"c": {"f": 20}, "d": 2}}]

    """

    def process_value(self, value: Any) -> Any:
        return value

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        res = super().process(instance=instance, stream_name=stream_name)
        for from_field, to_field in self._field_to_field:
            if (not is_subpath(from_field, to_field)) and (
                not is_subpath(to_field, from_field)
            ):
                dict_delete(res, from_field)
                if self.use_query:
                    from_field_components = list(
                        os.path.normpath(from_field).split(os.path.sep)
                    )
                    while len(from_field_components) > 1:
                        from_field_components.pop()
                        parent = dict_get(res, os.path.sep.join(from_field_components))
                        if isinstance(parent, dict) and not parent:
                            dict_delete(res, os.path.sep.join(from_field_components))
                        else:
                            break

        return res


class AddConstant(FieldOperator):
    """Adds a constant, being argument 'add', to the processed value.

    Args:
        add: the constant to add.
    """

    add: Any

    def process_value(self, value: Any) -> Any:
        return self.add + value


class Augmentor(StreamInstanceOperator):
    """A stream that augments the values of either the task input fields before rendering with the template,  or the  input passed to the model after rendering of the template.

    Args:
        augment_model_input: Whether to augment the input to the model.
        augment_task_input:  Whether to augment the task input fields.  The specific fields are defined in the FormTask operator.

    """

    augment_task_input: bool = False
    augment_model_input: bool = False

    def verify(self):
        assert not (
            self.augment_task_input and self.augment_model_input
        ), "Augmentor must set either 'augment_task_input' and 'augment_model_input' but not both"
        assert (
            self.augment_task_input or self.augment_model_input
        ), "Augmentor must set either 'augment_task_input' or 'augment_model_input'"

        super().verify()

    @abstractmethod
    def process_value(self, value: Any) -> Any:
        pass

    def prepare(self):
        pass

    def set_task_input_fields(self, task_input_fields: List[str]):
        self._task_input_fields = [
            "inputs/" + task_input_field for task_input_field in task_input_fields
        ]

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        if self.augment_task_input:
            assert (
                len(self._task_input_fields) > 0
            ), "No augmentable input fields were defined in FormTask, and augmentation was requested. Specify the fields to augment in 'argumentable_inputs' attribute of the FormTask."
            fields = self._task_input_fields
            assert not self.augment_model_input

        if self.augment_model_input:
            fields = ["source"]
            assert not self.augment_task_input

        for field_name in fields:
            try:
                old_value = dict_get(
                    instance,
                    field_name,
                    use_dpath=True,
                    default="",
                    not_exist_ok=False,
                )
            except ValueError as e:
                raise TypeError(f"Failed to get {field_name} from {instance}") from e

            try:
                new_value = self.process_value(old_value)
            except Exception as e:
                raise RuntimeError(
                    f"Error augmenting value '{old_value}' from '{field_name}' in instance: {instance}"
                ) from e
            dict_set(instance, field_name, new_value, use_dpath=True, not_exist_ok=True)
        return instance


class NullAugmentor(Augmentor):
    """Does not change the input string."""

    def verify(self):
        pass

    def process_value(self, value: Any) -> Any:
        return value


class AugmentWhitespace(Augmentor):
    """Augments the inputs by replace existing whitespace with other whitespace.

    Currently each whitespace is replaced by a random choice of 1-3 whitespace charaters (spcae, tab, newline).
    """

    def process_value(self, value: Any) -> Any:
        import re

        words = re.split(r"(\s+)", value)
        new_value = ""

        random_generator = new_random_generator(sub_seed=value)
        for word in words:
            if word.isspace():
                new_value += random_generator.choice(
                    ["\n", "\t", " "]
                ) * random_generator.randint(1, 3)
            else:
                new_value += word
        return new_value


class AugmentPrefixSuffix(Augmentor):
    r"""Augments the input by prepending and appending to it a randomly selected (typically, whitespace) patterns.

    Args:
     prefixes, suffixes (list or dict) : the potential (typically, whitespace) patterns to select from.
        The dictionary version allows to specify relative weights of the different patterns.
     prefix_len, suffix_len (positive int) : The added prefix or suffix will be of length
        prefix_len of suffix_len, respectively, repetitions of the randomly selected patterns.
     remove_existing_whitespaces : allows to first clean any existing leading and trailing whitespaces.
        The strings made of repetitions of the selected pattern(s) are then prepended and/or appended to the potentially
        trimmed input.
     If only one of prefixes/suffixes is needed, set the other to None.

    Examples:
        To prepend the input with a prefix made of 4 '\n'-s or '\t'-s, employ
        AugmentPrefixSuffix(augment_model_input=True, prefixes=['\n','\t'], prefix_len=4, suffixes = None)
        To append the input with a suffix made of 3 '\n'-s or '\t'-s, with triple '\n' suffixes
        being preferred over triple '\t', at 2:1 ratio, employ
        AugmentPrefixSuffix(augment_model_input=True, suffixes={'\n':2,'\t':1}, suffix_len=3, prefixes = None)
        which will append '\n'-s twice as often as '\t'-s.

    """

    prefixes: Optional[Union[List[str], Dict[str, int]]] = {
        " ": 20,
        "\\t": 10,
        "\\n": 40,
        "": 30,
    }
    prefix_len: Optional[int] = 3
    suffixes: Optional[Union[List[str], Dict[str, int]]] = {
        " ": 20,
        "\\t": 10,
        "\\n": 40,
        "": 30,
    }
    suffix_len: Optional[int] = 3
    remove_existing_whitespaces: Optional[bool] = False

    def verify(self):
        assert (
            self.prefixes or self.suffixes
        ), "At least one of prefixes/suffixes should be not None."
        for arg, arg_name in zip(
            [self.prefixes, self.suffixes], ["prefixes", "suffixes"]
        ):
            assert (
                arg is None or isoftype(arg, List[str]) or isoftype(arg, Dict[str, int])
            ), f"Argument {arg_name} should be either None or a list of strings or a dictionary str->int. {arg} is none of the above."
        assert (
            self.prefix_len > 0
        ), f"prefix_len must be positive, got {self.prefix_len}"
        assert (
            self.suffix_len > 0
        ), f"suffix_len must be positive, got {self.suffix_len}"
        super().verify()

    def _calculate_distributions(self, prefs_or_suffs):
        if prefs_or_suffs is None:
            return None, None
        patterns = (
            prefs_or_suffs
            if isinstance(prefs_or_suffs, list)
            else [k for k, v in prefs_or_suffs.items()]
        )
        total_weight = (
            len(patterns)
            if isinstance(prefs_or_suffs, list)
            else sum([v for k, v in prefs_or_suffs.items()])
        )
        weights = (
            [1.0 / total_weight] * len(patterns)
            if isinstance(prefs_or_suffs, list)
            else [float(prefs_or_suffs[p]) / total_weight for p in patterns]
        )
        return patterns, weights

    def prepare(self):
        # Being an artifact, prepare is invoked before verify. Here we need verify before the actions
        self.verify()
        self._prefix_pattern_distribution = {"length": self.prefix_len}
        self._suffix_pattern_distribution = {"length": self.suffix_len}

        (
            self._prefix_pattern_distribution["patterns"],
            self._prefix_pattern_distribution["weights"],
        ) = self._calculate_distributions(self.prefixes)
        (
            self._suffix_pattern_distribution["patterns"],
            self._suffix_pattern_distribution["weights"],
        ) = self._calculate_distributions(self.suffixes)
        super().prepare()

    def _get_random_pattern(
        self, pattern_distribution, random_generator: Random
    ) -> str:
        string_to_add = ""
        if pattern_distribution["patterns"]:
            string_to_add = "".join(
                random_generator.choices(
                    pattern_distribution["patterns"],
                    pattern_distribution["weights"],
                    k=pattern_distribution["length"],
                )
            )
        return string_to_add

    def process_value(self, value: Any) -> Any:
        assert value is not None, "input value should not be None"
        new_value = str(value)
        if self.remove_existing_whitespaces:
            new_value = new_value.strip()
        random_generator = new_random_generator(sub_seed=value)
        prefix = self._get_random_pattern(
            self._prefix_pattern_distribution, random_generator
        )
        suffix = self._get_random_pattern(
            self._suffix_pattern_distribution, random_generator
        )
        return prefix + new_value + suffix


class ShuffleFieldValues(FieldOperator):
    """Shuffles a list of values found in a field."""

    def process_value(self, value: Any) -> Any:
        res = list(value)
        random_generator = new_random_generator(sub_seed=res)
        random_generator.shuffle(res)
        return res


class JoinStr(FieldOperator):
    """Joins a list of strings (contents of a field), similar to str.join().

    Args:
        separator (str): text to put between values
    """

    separator: str = ","

    def process_value(self, value: Any) -> Any:
        return self.separator.join(str(x) for x in value)


class Apply(StreamInstanceOperator):
    """A class used to apply a python function and store the result in a field.

    Args:
        function (str): name of function.
        to_field (str): the field to store the result
        additional arguments are field names passed to the function

    Examples:
    Store in field  "b" the uppercase string of the value in field "a"
    Apply("a", function=str.upper, to_field="b")

    Dump the json representation of field "t" and store back in the same field.
    Apply("t", function=json.dumps, to_field="t")

    Set the time in a field 'b'.
    Apply(function=time.time, to_field="b")

    """

    __allow_unexpected_arguments__ = True
    function: Callable = NonPositionalField(required=True)
    to_field: str = NonPositionalField(required=True)

    def function_to_str(self, function: Callable) -> str:
        parts = []

        if hasattr(function, "__module__"):
            parts.append(function.__module__)
        if hasattr(function, "__qualname__"):
            parts.append(function.__qualname__)
        else:
            parts.append(function.__name__)

        return ".".join(parts)

    def str_to_function(self, function_str: str) -> Callable:
        splitted = function_str.split(".", 1)
        if len(splitted) == 1:
            return __builtins__[splitted[0]]

        module_name, function_name = splitted
        if module_name in __builtins__:
            obj = __builtins__[module_name]
        elif module_name in globals():
            obj = globals()[module_name]
        else:
            obj = importlib.import_module(module_name)
        for part in function_name.split("."):
            obj = getattr(obj, part)
        return obj

    def prepare(self):
        super().prepare()
        if isinstance(self.function, str):
            self.function = self.str_to_function(self.function)
        self._init_dict["function"] = self.function_to_str(self.function)

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        argv = [instance[arg] for arg in self._argv]
        kwargs = {key: instance[val] for key, val in self._kwargs}

        result = self.function(*argv, **kwargs)

        instance[self.to_field] = result
        return instance


class ListFieldValues(StreamInstanceOperator):
    """Concatenates values of multiple fields into a list, and assigns it to a new field."""

    fields: List[str]
    to_field: str
    use_query: bool = False

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        values = []
        for field_name in self.fields:
            values.append(dict_get(instance, field_name, use_dpath=self.use_query))
        instance[self.to_field] = values
        return instance


class ZipFieldValues(StreamInstanceOperator):
    """Zips values of multiple fields in a given instance, similar to list(zip(*fields)).

    The value in each of the specified 'fields' is assumed to be a list. The lists from all 'fields'
    are zipped, and stored into 'to_field'.

    If 'longest'=False, the length of the zipped result is determined by the shortest input value.
    If 'longest'=False, the length of the zipped result is determined by the longest input, padding shorter
    inputs with None -s.

    """

    fields: List[str]
    to_field: str
    longest: bool = False
    use_query: bool = False

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        values = []
        for field_name in self.fields:
            values.append(dict_get(instance, field_name, use_dpath=self.use_query))
        if self.longest:
            zipped = zip_longest(*values)
        else:
            zipped = zip(*values)
        instance[self.to_field] = list(zipped)
        return instance


class IndexOf(StreamInstanceOperator):
    """For a given instance, finds the offset of value of field 'index_of', within the value of field 'search_in'."""

    search_in: str
    index_of: str
    to_field: str
    use_query: bool = False

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        lst = dict_get(instance, self.search_in, use_dpath=self.use_query)
        item = dict_get(instance, self.index_of, use_dpath=self.use_query)
        instance[self.to_field] = lst.index(item)
        return instance


class TakeByField(StreamInstanceOperator):
    """From field 'field' of a given instance, select the member indexed by field 'index', and store to field 'to_field'."""

    field: str
    index: str
    to_field: str = None
    use_query: bool = False

    def prepare(self):
        if self.to_field is None:
            self.to_field = self.field

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        value = dict_get(instance, self.field, use_dpath=self.use_query)
        index_value = dict_get(instance, self.index, use_dpath=self.use_query)
        instance[self.to_field] = value[index_value]
        return instance


class Perturbate(FieldOperator):
    """Slightly perturbates the contents of 'field'. Could be Handy for imitating prediction from given target.

    When task was classification, argument 'select_from' can be used to list the other potential classes, as a
    relevant perturbation
    """

    select_from: List[Any] = []
    percentage_to_perturbate: int = 1  # 1 percent

    def verify(self):
        assert (
            0 <= self.percentage_to_perturbate and self.percentage_to_perturbate <= 100
        ), f"'percentage_to_perturbate' should be in the range 0..100. Received {self.percentage_to_perturbate}"

    def prepare(self):
        super().prepare()
        self.random_generator = new_random_generator(sub_seed="CopyWithPerturbation")

    def process_value(self, value: Any) -> Any:
        perturbate = (
            self.random_generator.randint(1, 100) <= self.percentage_to_perturbate
        )
        if not perturbate:
            return value

        if value in self.select_from:
            # 80% of cases, return a decent class, otherwise, perturbate the value itself as follows
            if self.random_generator.random() < 0.8:
                return self.random_generator.choice(self.select_from)

        if isinstance(value, float):
            return value * (0.5 + self.random_generator.random())

        if isinstance(value, int):
            perturb = 1 if self.random_generator.random() < 0.5 else -1
            return value + perturb

        if isinstance(value, str):
            if len(value) < 2:
                # give up perturbation
                return value
            # throw one char out
            prefix_len = self.random_generator.randint(1, len(value) - 1)
            return value[:prefix_len] + value[prefix_len + 1 :]

        # and in any other case:
        return value


class CopyFields(FieldOperator):
    """Copies values from specified fields to specified fields.

    Args (of parent class):
        field_to_field (Union[List[List], Dict[str, str]]): A list of lists, where each sublist contains the source field and the destination field, or a dictionary mapping source fields to destination fields.
        use_query (bool): Whether to use dpath for accessing fields. Defaults to False.

    Examples:
        An input instance {"a": 2, "b": 3}, when processed by
        CopyField(field_to_field={"a": "b"}
        would yield {"a": 2, "b": 2}, and when processed by
        CopyField(field_to_field={"a": "c"} would yield
        {"a": 2, "b": 3, "c": 2}

        with use_query=True, we can also copy inside the field:
        CopyFields(field_to_field={"a/0": "a"}, use_query=True)
        would process instance {"a": [1, 3]} into {"a": 1}


    """

    def process_value(self, value: Any) -> Any:
        return value


class AddID(StreamInstanceOperator):
    """Stores a unique id value in the designated 'id_field_name' field of the given instance."""

    id_field_name: str = "id"

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        instance[self.id_field_name] = str(uuid.uuid4()).replace("-", "")
        return instance


class CastFields(StreamInstanceOperator):
    """Casts specified fields to specified types.

    Args:
        use_nested_query (bool): Whether to cast nested fields, expressed in dpath. Defaults to False.
        fields (Dict[str, str]): A dictionary mapping field names to the names of the types to cast the fields to.
            e.g: "int", "str", "float", "bool". Basic names of types
        defaults (Dict[str, object]): A dictionary mapping field names to default values for cases of casting failure.
        process_every_value (bool): If true, all fields involved must contain lists, and each value in the list is then casted. Defaults to False.

    Examples:
        CastFields(
                fields={"a/d": "float", "b": "int"},
                failure_defaults={"a/d": 0.0, "b": 0},
                process_every_value=True,
                use_nested_query=True
            )
        would process the input instance: {"a": {"d": ["half", "0.6", 1, 12]}, "b": ["2"]}
            into {"a": {"d": [0.0, 0.6, 1.0, 12.0]}, "b": [2]}

    """

    fields: Dict[str, str] = field(default_factory=dict)
    failure_defaults: Dict[str, object] = field(default_factory=dict)
    use_nested_query: bool = False
    process_every_value: bool = False

    def prepare(self):
        self.types = {"int": int, "float": float, "str": str, "bool": bool}

    def _cast_single(self, value, type, field):
        try:
            return self.types[type](value)
        except Exception as e:
            if field not in self.failure_defaults:
                raise ValueError(
                    f'Failed to cast field "{field}" with value {value} to type "{type}", and no default value is provided.'
                ) from e
            return self.failure_defaults[field]

    def _cast_multiple(self, values, type, field):
        return [self._cast_single(value, type, field) for value in values]

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        for field_name, type in self.fields.items():
            value = dict_get(instance, field_name, use_dpath=self.use_nested_query)
            if self.process_every_value:
                assert isinstance(
                    value, list
                ), f"'process_every_value' can be set to True only for fields that contain lists, whereas in instance {instance}, the contents of field '{field_name}' is of type '{type(value)}'"
                casted_value = self._cast_multiple(value, type, field_name)
            else:
                casted_value = self._cast_single(value, type, field_name)
            dict_set(
                instance, field_name, casted_value, use_dpath=self.use_nested_query
            )
        return instance


class DivideAllFieldsBy(StreamInstanceOperator):
    """Recursively reach down to all fields that are float, and divide each by 'divisor'.

    The given instance is viewed as a tree whose internal nodes are dictionaries and lists, and
    the leaves are either 'float' and then divided, or other basic type, in which case, a ValueError is raised
    if input flag 'strict' is True, or -- left alone, if 'strict' is False.

    Args:
        divisor (float) the value to divide by
        strict (bool) whether to raise an error upon visiting a leaf that is not float. Defaults to False.

    Example:
        when instance {"a": 10.0, "b": [2.0, 4.0, 7.0], "c": 5} is processed by operator:
        operator = DivideAllFieldsBy(divisor=2.0)
        the output is: {"a": 5.0, "b": [1.0, 2.0, 3.5], "c": 5}
        If the operator were defined with strict=True, through:
        operator = DivideAllFieldsBy(divisor=2.0, strict=True),
        the processing of the above instance would raise a ValueError, for the integer at "c".
    """

    divisor: float = 1.0
    strict: bool = False

    def _recursive_divide(self, instance, divisor):
        if isinstance(instance, dict):
            for key, value in instance.items():
                instance[key] = self._recursive_divide(value, divisor)
        elif isinstance(instance, list):
            for i, value in enumerate(instance):
                instance[i] = self._recursive_divide(value, divisor)
        elif isinstance(instance, float):
            instance /= divisor
        elif self.strict:
            raise ValueError(f"Cannot divide instance of type {type(instance)}")
        return instance

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        return self._recursive_divide(instance, self.divisor)


class ArtifactFetcherMixin:
    """Provides a way to fetch and cache artifacts in the system.

    Args:
        cache (Dict[str, Artifact]): A cache for storing fetched artifacts.
    """

    cache: Dict[str, Artifact] = {}

    @classmethod
    def get_artifact(cls, artifact_identifier: str) -> Artifact:
        if artifact_identifier not in cls.cache:
            artifact, artifactory = fetch_artifact(artifact_identifier)
            cls.cache[artifact_identifier] = artifact
        return cls.cache[artifact_identifier]


class ApplyOperatorsField(StreamInstanceOperator, ArtifactFetcherMixin):
    """Applies value operators to each instance in a stream based on specified fields.

    Args:
        operators_field (str): name of the field that contains a single name, or a list of names, of the operators to be applied,
            one after the other, for the processing of the instance. Each operator is equipped with 'process_instance()'
            method.

        default_operators (List[str]): A list of default operators to be used if no operators are found in the instance.

    Example:
        when instance {"prediction": 111, "references": [222, 333] , "c": ["processors.to_string", "processors.first_character"]}
        is processed by operator (please look up the catalog that these operators, they are tuned to process fields "prediction" and
        "references"):
        operator = ApplyOperatorsField(operators_field="c"),
        the resulting instance is: {"prediction": "1", "references": ["2", "3"], "c": ["processors.to_string", "processors.first_character"]}

    """

    operators_field: str
    default_operators: List[str] = None

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        operator_names = instance.get(self.operators_field)
        if operator_names is None:
            assert (
                self.default_operators is not None
            ), f"No operators found in field '{self.operators_field}', and no default operators provided."
            operator_names = self.default_operators

        if isinstance(operator_names, str):
            operator_names = [operator_names]
        # otherwise , operator_names is already a list

        # we now have a list of nanes of operators, each is equipped with process_instance method.
        operator = SequentialOperator(steps=operator_names)
        return operator.process_instance(instance)


class FilterByCondition(SingleStreamOperator):
    """Filters a stream, yielding only instances for which the required values follows the required condition operator.

    Raises an error if a required key is missing.

    Args:
       values (Dict[str, Any]): Values that instances must match using the condition to be included in the output.
       condition: the name of the desired condition operator between the key and the value in values ("gt", "ge", "lt", "le", "ne", "eq")
       error_on_filtered_all (bool, optional): If True, raises an error if all instances are filtered out. Defaults to True.

    Examples:
       FilterByCondition(values = {"a":4}, condition = "gt") will yield only instances where "a">4
       FilterByCondition(values = {"a":4}, condition = "le") will yield only instances where "a"<=4
       FilterByCondition(values = {"a":[4,8]}, condition = "in") will yield only instances where "a" is 4 or 8
       FilterByCondition(values = {"a":[4,8]}, condition = "not in") will yield only instances where "a" different from 4 or 8

    """

    values: Dict[str, Any]
    condition: str
    condition_to_func = {
        "gt": operator.gt,
        "ge": operator.ge,
        "lt": operator.lt,
        "le": operator.le,
        "eq": operator.eq,
        "ne": operator.ne,
        "in": None,  # Handled as special case
        "not in": None,  # Handled as special case
    }
    error_on_filtered_all: bool = True

    def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
        yielded = False
        for instance in stream:
            if self._is_required(instance):
                yielded = True
                yield instance

        if not yielded and self.error_on_filtered_all:
            raise RuntimeError(
                f"{self.__class__.__name__} filtered out every instance in stream '{stream_name}'. If this is intended set error_on_filtered_all=False"
            )

    def verify(self):
        if self.condition not in self.condition_to_func:
            raise ValueError(
                f"Unsupported condition operator '{self.condition}', supported {list(self.condition_to_func.keys())}"
            )

        for key, value in self.values.items():
            if self.condition in ["in", "not it"] and not isinstance(value, list):
                raise ValueError(
                    f"The filter for key ('{key}') in FilterByCondition with condition '{self.condition}' must be list but is not : '{value}'"
                )
        return super().verify()

    def _is_required(self, instance: dict) -> bool:
        for key, value in self.values.items():
            if key not in instance:
                raise ValueError(
                    f"Required filter field ('{key}') in FilterByCondition is not found in {instance}"
                )
            if self.condition == "in":
                if instance[key] not in value:
                    return False
            elif self.condition == "not in":
                if instance[key] in value:
                    return False
            else:
                func = self.condition_to_func[self.condition]
                if func is None:
                    raise ValueError(
                        f"Function not defined for condition '{self.condition}'"
                    )
                if not func(instance[key], value):
                    return False
        return True


class FilterByQuery(SingleStreamOperator):
    """Filters a stream, yielding only instances which fulfil a condition specified as a string to be python's eval-uated.

    Raises an error if a field participating in the specified condition is missing from the instance

    Args:
       query (str): a condition over fields of the instance, to be processed by python's eval()
       error_on_filtered_all (bool, optional): If True, raises an error if all instances are filtered out. Defaults to True.

    Examples:
       FilterByQuery(query = "a > 4") will yield only instances where "a">4
       FilterByQuery(query = "a <= 4 and b > 5") will yield only instances where the value of field "a" is not exceeding 4 and in field "b" -- greater than 5
       FilterByQuery(query = "a in [4, 8]") will yield only instances where "a" is 4 or 8
       FilterByQuery(query = "a not in [4, 8]") will yield only instances where "a" is neither 4 nor 8

    """

    query: str
    error_on_filtered_all: bool = True

    def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
        yielded = False
        for instance in stream:
            if eval(self.query, None, instance):
                yielded = True
                yield instance

        if not yielded and self.error_on_filtered_all:
            raise RuntimeError(
                f"{self.__class__.__name__} filtered out every instance in stream '{stream_name}'. If this is intended set error_on_filtered_all=False"
            )


class ExecuteQuery(StreamInstanceOperator):
    """Compute an expression (query), expressed as a string to be eval-uated, over the instance's fields, and store the result in field to_field.

    Raises an error if a field mentioned in the query is missing from the instance.

    Args:
       query (str): an expression to be evaluated over the fields of the instance
       to_field (str): the field where the result is to be stored into

    Examples:
       When instance {"a": 2, "b": 3} is process-ed by operator
       ExecuteQuery(query="a+b", to_field = "c")
       the result is {"a": 2, "b": 3, "c": 5}

       When instance {"a": "hello", "b": "world"} is process-ed by operator
       ExecuteQuery(query = "a+' '+b", to_field = "c")
       the result is {"a": "hello", "b": "world", "c": "hello world"}

    """

    query: str
    to_field: str

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        instance[self.to_field] = eval(self.query, None, instance)
        return instance


class ExtractMostCommonFieldValues(MultiStreamOperator):
    field: str
    stream_name: str
    overall_top_frequency_percent: Optional[int] = 100
    min_frequency_percent: Optional[int] = 0
    to_field: str
    process_every_value: Optional[bool] = False

    """
    Extract the unique values of a field ('field') of a given stream ('stream_name') and store (the most frequent of) them
    as a list in a new field ('to_field') in all streams.

    More specifically, sort all the unique values encountered in field 'field' by decreasing order of frequency.
    When 'overall_top_frequency_percent' is smaller than 100, trim the list from bottom, so that the total frequency of
    the remaining values makes 'overall_top_frequency_percent' of the total number of instances in the stream.
    When 'min_frequency_percent' is larger than 0, remove from the list any value whose relative frequency makes
    less than 'min_frequency_percent' of the total number of instances in the stream.
    At most one of 'overall_top_frequency_percent' and 'min_frequency_percent' is allowed to move from their default values.

    Examples:

    ExtractMostCommonFieldValues(stream_name="train", field="label", to_field="classes") - extracts all the unique values of
    field 'label', sorts them by decreasing frequency, and stores the resulting list in field 'classes' of each and
    every instance in all streams.

    ExtractMostCommonFieldValues(stream_name="train", field="labels", to_field="classes", process_every_value=True) -
    in case that field 'labels' contains a list of values (and not a single value) - track the occurrences of all the possible
    value members in these lists, and report the most frequent values.
    if process_every_value=False, track the most frequent whole lists, and report those (as a list of lists) in field
    'to_field' of each instance of all streams.

    ExtractMostCommonFieldValues(stream_name="train", field="label", to_field="classes",overall_top_frequency_percent=80) -
    extracts the most frequent possible values of field 'label' that together cover at least 80% of the instances of stream_name,
    and stores them in field 'classes' of each instance of all streams.

    ExtractMostCommonFieldValues(stream_name="train", field="label", to_field="classes",min_frequency_percent=5) -
    extracts all possible values of field 'label' that cover, each, at least 5% of the instances.
    Stores these values, sorted by decreasing order of frequency, in field 'classes' of each instance in all streams.
    """

    def verify(self):
        assert (
            self.overall_top_frequency_percent <= 100
            and self.overall_top_frequency_percent >= 0
        ), "'overall_top_frequency_percent' must be between 0 and 100"
        assert (
            self.min_frequency_percent <= 100 and self.min_frequency_percent >= 0
        ), "'min_frequency_percent' must be between 0 and 100"
        assert not (
            self.overall_top_frequency_percent < 100 and self.min_frequency_percent > 0
        ), "At most one of 'overall_top_frequency_percent' and 'min_frequency_percent' is allowed to move from their default value"
        super().verify()

    def process(self, multi_stream: MultiStream) -> MultiStream:
        stream = multi_stream[self.stream_name]
        counter = Counter()
        for instance in stream:
            if (not isinstance(instance[self.field], list)) and (
                self.process_every_value is True
            ):
                raise ValueError(
                    "'process_every_field' is allowed to change to 'True' only for fields whose contents are lists"
                )
            if (not isinstance(instance[self.field], list)) or (
                self.process_every_value is False
            ):
                # either not a list, or is a list but process_every_value == False : view contetns of 'field' as one entity whose occurrences are counted.
                counter.update(
                    [(*instance[self.field],)]
                    if isinstance(instance[self.field], list)
                    else [instance[self.field]]
                )  # convert to a tuple if list, to enable the use of Counter which would not accept
                # a list as an hashable entity to count its occurrences
            else:
                # content of 'field' is a list and process_every_value == True: add one occurrence on behalf of each individual value
                counter.update(instance[self.field])
        # here counter counts occurrences of individual values, or tupples.
        values_and_counts = counter.most_common()
        if self.overall_top_frequency_percent < 100:
            top_frequency = (
                sum(counter.values()) * self.overall_top_frequency_percent / 100.0
            )
            sum_counts = 0
            for _i, p in enumerate(values_and_counts):
                sum_counts += p[1]
                if sum_counts >= top_frequency:
                    break
            values_and_counts = counter.most_common(_i + 1)
        if self.min_frequency_percent > 0:
            min_frequency = self.min_frequency_percent * sum(counter.values()) / 100.0
            while values_and_counts[-1][1] < min_frequency:
                values_and_counts.pop()
        values_to_keep = [
            [*ele[0]] if isinstance(ele[0], tuple) else ele[0]
            for ele in values_and_counts
        ]

        addmostcommons = AddFields(fields={self.to_field: values_to_keep})
        return addmostcommons(multi_stream)


class ExtractFieldValues(ExtractMostCommonFieldValues):
    def verify(self):
        super().verify()

    def prepare(self):
        self.overall_top_frequency_percent = 100
        self.min_frequency_percent = 0


class Intersect(FieldOperator):
    """Intersects the value of a field, which must be a list, with a given list.

    Args:
        allowed_values (list) - list to intersect.
    """

    allowed_values: List[Any]

    def verify(self):
        super().verify()
        if self.process_every_value:
            raise ValueError(
                "'process_every_value=True' is not supported in Intersect operator"
            )

        if not isinstance(self.allowed_values, list):
            raise ValueError(
                f"The allowed_values is not a list but '{self.allowed_values}'"
            )

    def process_value(self, value: Any) -> Any:
        super().process_value(value)
        if not isinstance(value, list):
            raise ValueError(f"The value in field is not a list but '{value}'")
        return [e for e in value if e in self.allowed_values]


class RemoveValues(FieldOperator):
    """Removes elements in a field, which must be a list, using a given list of unallowed.

    Args:
        unallowed_values (list) - values to be removed.
    """

    unallowed_values: List[Any]

    def verify(self):
        super().verify()
        if self.process_every_value:
            raise ValueError(
                "'process_every_value=True' is not supported in RemoveValues operator"
            )

        if not isinstance(self.unallowed_values, list):
            raise ValueError(
                f"The unallowed_values is not a list but '{self.unallowed_values}'"
            )

    def process_value(self, value: Any) -> Any:
        if not isinstance(value, list):
            raise ValueError(f"The value in field is not a list but '{value}'")
        return [e for e in value if e not in self.unallowed_values]


class Unique(SingleStreamReducer):
    """Reduces a stream to unique instances based on specified fields.

    Args:
        fields (List[str]): The fields that should be unique in each instance.
    """

    fields: List[str] = field(default_factory=list)

    @staticmethod
    def to_tuple(instance: dict, fields: List[str]) -> tuple:
        result = []
        for field_name in fields:
            value = instance[field_name]
            if isinstance(value, list):
                value = tuple(value)
            result.append(value)
        return tuple(result)

    def process(self, stream: Stream) -> Stream:
        seen = set()
        for instance in stream:
            values = self.to_tuple(instance, self.fields)
            if values not in seen:
                seen.add(values)
        return list(seen)


class SplitByValue(MultiStreamOperator):
    """Splits a MultiStream into multiple streams based on unique values in specified fields.

    Args:
        fields (List[str]): The fields to use when splitting the MultiStream.
    """

    fields: List[str] = field(default_factory=list)

    def process(self, multi_stream: MultiStream) -> MultiStream:
        uniques = Unique(fields=self.fields)(multi_stream)

        result = {}

        for stream_name, stream in multi_stream.items():
            stream_unique_values = uniques[stream_name]
            for unique_values in stream_unique_values:
                filtering_values = dict(zip(self.fields, unique_values))
                filtered_streams = FilterByCondition(
                    values=filtering_values, condition="eq"
                )._process_single_stream(stream)
                filtered_stream_name = (
                    stream_name + "_" + nested_tuple_to_string(unique_values)
                )
                result[filtered_stream_name] = filtered_streams

        return MultiStream(result)


class ApplyStreamOperatorsField(SingleStreamOperator, ArtifactFetcherMixin):
    """Applies stream operators to a stream based on specified fields in each instance.

    Args:
        field (str): The field containing the operators to be applied.
        reversed (bool): Whether to apply the operators in reverse order.
    """

    field: str
    reversed: bool = False

    def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
        first_instance = stream.peek()

        operators = first_instance.get(self.field, [])
        if isinstance(operators, str):
            operators = [operators]

        if self.reversed:
            operators = list(reversed(operators))

        for operator_name in operators:
            operator = self.get_artifact(operator_name)
            assert isinstance(
                operator, StreamingOperator
            ), f"Operator {operator_name} must be a SingleStreamOperator"

            stream = operator(MultiStream({"tmp": stream}))["tmp"]

        yield from stream


class ApplyMetric(SingleStreamOperator, ArtifactFetcherMixin):
    """Applies metric operators to a stream based on a metric field specified in each instance.

    Args:
        metric_field (str): The field containing the metrics to be applied.
        calc_confidence_intervals (bool): Whether the applied metric should calculate confidence intervals or not.
    """

    metric_field: str
    calc_confidence_intervals: bool

    def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
        from .metrics import Metric, MetricPipeline, MetricWithConfidenceInterval

        first_instance = stream.peek()

        metric_names = first_instance.get(self.metric_field, [])
        if not metric_names:
            raise RuntimeError(
                f"Missing metric names in field '{self.metric_field}' and instance '{first_instance}'."
            )

        if isinstance(metric_names, str):
            metric_names = [metric_names]

        # Each metric operator computes its score and then sets the main score, overwriting
        # the previous main score value (if any). So, we need to reverse the order of the listed metrics.
        # This will cause the first listed metric to run last, and the main score will be set
        # by the first listed metric (as desired).
        metric_names = list(reversed(metric_names))

        for metric_name in metric_names:
            metric = self.get_artifact(metric_name)
            assert isinstance(
                metric, Metric
            ), f"Operator {metric_name} must be a Metric"

            if not self.calc_confidence_intervals:
                if isinstance(metric, MetricWithConfidenceInterval):
                    metric.disable_confidence_interval_calculation()
                elif isinstance(metric, MetricPipeline) and isinstance(
                    metric.metric, MetricWithConfidenceInterval
                ):
                    metric.metric.disable_confidence_interval_calculation()

            stream = metric(MultiStream({"tmp": stream}))["tmp"]

        yield from stream


class MergeStreams(MultiStreamOperator):
    """Merges multiple streams into a single stream.

    Args:
        new_stream_name (str): The name of the new stream resulting from the merge.
        add_origin_stream_name (bool): Whether to add the origin stream name to each instance.
        origin_stream_name_field_name (str): The field name for the origin stream name.
    """

    streams_to_merge: List[str] = None
    new_stream_name: str = "all"
    add_origin_stream_name: bool = True
    origin_stream_name_field_name: str = "origin"

    def merge(self, multi_stream):
        for stream_name, stream in multi_stream.items():
            if self.streams_to_merge is None or stream_name in self.streams_to_merge:
                for instance in stream:
                    if self.add_origin_stream_name:
                        instance[self.origin_stream_name_field_name] = stream_name
                    yield instance

    def process(self, multi_stream: MultiStream) -> MultiStream:
        return MultiStream(
            {
                self.new_stream_name: Stream(
                    self.merge, gen_kwargs={"multi_stream": multi_stream}
                )
            }
        )


class Shuffle(PagedStreamOperator):
    """Shuffles the order of instances in each page of a stream.

    Args (of superclass):
        page_size (int): The size of each page in the stream. Defaults to 1000.
    """

    random_generator: Random = None

    def before_process_multi_stream(self):
        super().before_process_multi_stream()
        self.random_generator = new_random_generator(sub_seed="shuffle")

    def process(self, page: List[Dict], stream_name: Optional[str] = None) -> Generator:
        self.random_generator.shuffle(page)
        yield from page


class EncodeLabels(StreamInstanceOperator):
    """Encode each value encountered in any field in 'fields' into the integers 0,1,...

    Encoding is determined by a str->int map that is built on the go, as different values are
    first encountered in the stream, either as list members or as values in single-value fields.

    Args:
        fields (List[str]): The fields to encode together.

    Example: applying
        EncodeLabels(fields = ["a", "b/*"])
        on input stream = [{"a": "red", "b": ["red", "blue"], "c":"bread"},
        {"a": "blue", "b": ["green"], "c":"water"}]   will yield the
        output stream = [{'a': 0, 'b': [0, 1], 'c': 'bread'}, {'a': 1, 'b': [2], 'c': 'water'}]

        Note: dpath is applied here, and hence, fields that are lists, should be included in
        input 'fields' with the appendix "/*"  as in the above example.

    """

    fields: List[str]

    def _process_multi_stream(self, multi_stream: MultiStream) -> MultiStream:
        self.encoder = {}
        return super()._process_multi_stream(multi_stream)

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        for field_name in self.fields:
            values = dict_get(instance, field_name, use_dpath=True)
            if not isinstance(values, list):
                values = [values]
            for value in values:
                if value not in self.encoder:
                    self.encoder[value] = len(self.encoder)
            new_values = [self.encoder[value] for value in values]
            dict_set(
                instance, field_name, new_values, use_dpath=True, set_multiple=True
            )

        return instance


class StreamRefiner(SingleStreamOperator):
    """Discard from the input stream all instances beyond the leading 'max_instances' instances.

    Thereby, if the input stream consists of no more than 'max_instances' instances, the resulting stream is the whole of the
    input stream. And if the input stream consists of more than 'max_instances' instances, the resulting stream only consists
    of the leading 'max_instances' of the input stream.

    Args:  max_instances (int)
           apply_to_streams (optional, list(str)): names of streams to refine.

    Examples:
        when input = [{"a": 1},{"a": 2},{"a": 3},{"a": 4},{"a": 5},{"a": 6}] is fed into
        StreamRefiner(max_instances=4)
        the resulting stream is [{"a": 1},{"a": 2},{"a": 3},{"a": 4}]
    """

    max_instances: int = None
    apply_to_streams: Optional[List[str]] = None

    def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
        if self.max_instances is not None:
            yield from stream.take(self.max_instances)
        else:
            yield from stream


class DeterministicBalancer(StreamRefiner):
    """A class used to balance streams deterministically.

    For each instance, a signature is constructed from the values of the instance in specified input 'fields'.
    By discarding instances from the input stream, DeterministicBalancer maintains equal number of instances for all signatures.
    When also input 'max_instances' is specified, DeterministicBalancer maintains a total instance count not exceeding
    'max_instances'. The total number of discarded instances is as few as possible.

    Attributes:
        fields (List[str]): A list of field names to be used in producing the instance's signature.
        max_instances (Optional, int)

    Usage:
        balancer = DeterministicBalancer(fields=["field1", "field2"], max_instances=200)
        balanced_stream = balancer.process(stream)

    Example:
        When input [{"a": 1, "b": 1},{"a": 1, "b": 2},{"a": 2},{"a": 3},{"a": 4}] is fed into
        DeterministicBalancer(fields=["a"])
        the resulting stream will be: [{"a": 1, "b": 1},{"a": 2},{"a": 3},{"a": 4}]
    """

    fields: List[str]

    def signature(self, instance):
        return str(
            tuple(dict_get(instance, field, use_dpath=True) for field in self.fields)
        )

    def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
        counter = collections.Counter()

        for instance in stream:
            counter[self.signature(instance)] += 1

        if len(counter) == 0:
            return

        lowest_count = counter.most_common()[-1][-1]

        max_total_instances_per_sign = lowest_count
        if self.max_instances is not None:
            max_total_instances_per_sign = min(
                lowest_count, self.max_instances // len(counter)
            )

        counter = collections.Counter()

        for instance in stream:
            sign = self.signature(instance)
            if counter[sign] < max_total_instances_per_sign:
                counter[sign] += 1
                yield instance


class LengthBalancer(DeterministicBalancer):
    """Balances by a signature that reflects the total length of the fields' values, quantized into integer segments.

    Args:
        segments_boundaries (List[int]): distinct integers sorted in increasing order, that maps a given total length
        into the index of the least of them that exceeds the total length. (If none exceeds -- into one index
        beyond, namely, the length of segments_boudaries)

        fields (Optional, List[str])

    Example:
        when input [{"a": [1, 3], "b": 0, "id": 0}, {"a": [1, 3], "b": 0, "id": 1}, {"a": [], "b": "a", "id": 2}] is fed into

        .. code-block::

            LengthBalancer(fields=["a"], segments_boundaries=[1])

        input instances will be counted and balanced against two categories: empty total length (less than 1), and non-empty.
    """

    segments_boundaries: List[int]
    fields: Optional[List[str]]

    def signature(self, instance):
        total_len = 0
        for field_name in self.fields:
            total_len += len(dict_get(instance, field_name, use_dpath=True))
        for i, val in enumerate(self.segments_boundaries):
            if total_len < val:
                return i
        return i + 1