Datasets:

ArXiv:
File size: 4,382 Bytes
cb12b19
7d7cc9e
5218ddd
7d7cc9e
cb12b19
 
7d7cc9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5218ddd
7d7cc9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5218ddd
7d7cc9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from typing import Any, Dict, List, Generator

from .operator import SingleStreamOperator, StreamInstanceOperator
from .stream import Stream


def absrtact_factory():
    return {}


def abstract_field():
    return field(default_factory=absrtact_factory)


class UpdateStream(StreamInstanceOperator):
    update: dict

    def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
        instance.update(self.update)
        return instance

# TODO: currently we have two classes with this name. metric.Metric and matrics.Metric...
class Metric(ABC):
    @property
    @abstractmethod
    def main_score(self):
        pass


class GlobalMetric(SingleStreamOperator, Metric):
    def process(self, stream: Stream):
        references = []
        predictions = []
        global_score = {}

        instances = []

        for instance in stream:
            if "score" not in instance:
                instance["score"] = {"global": global_score, "instance": {}}
            else:
                global_score = instance["score"]["global"]

            refs, pred = instance["references"], instance["prediction"]

            instance_score = self._compute([refs], [pred])
            instance["score"]["instance"].update(instance_score)

            references.append(refs)
            predictions.append(pred)
            instances.append(instance)

        result = self._compute(references, predictions)

        global_score.update(result)

        for instance in instances:
            instance["score"]["global"] = global_score
            yield instance

    def _compute(self, references: List[List[str]], predictions: List[str]) -> dict:
        result = self.compute(references, predictions)
        result["score"] = result[self.main_score]
        return result

    @abstractmethod
    def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
        pass


class InstanceMetric(SingleStreamOperator, Metric):
    implemented_reductions: List[str] = field(default_factory=lambda: ["mean"])

    @property
    @abstractmethod
    def reduction_map(self) -> dict:
        pass

    def process(self, stream: Stream, stream_name: str = None) -> Generator:
        global_score = {}
        instances = []

        for instance in stream:
            refs, pred = instance["references"], instance["prediction"]

            instance_score = self._compute(refs, pred)

            if "score" not in instance:
                instance["score"] = {"global": global_score, "instance": {}}
            else:
                global_score = instance["score"]["global"]

            instance["score"]["instance"].update(instance_score)

            instances.append(instance)

        for reduction, fields in self.reduction_map.items():
            assert (
                reduction in self.implemented_reductions
            ), f"Reduction {reduction} is not implemented, use one of {self.implemented_reductions}"

            if reduction == "mean":
                from statistics import mean

                for field in fields:
                    global_score[field] = mean([instance["score"]["instance"][field] for instance in instances])
                    if field == self.main_score:
                        global_score["score"] = global_score[field]

        for instance in instances:
            yield instance

    def _compute(self, references: List[List[str]], predictions: List[str]) -> dict:
        result = self.compute(references, predictions)
        result["score"] = result[self.main_score]
        return result

    @abstractmethod
    def compute(self, references: List[str], prediction: str) -> dict:
        pass


class SingleReferenceInstanceMetric(InstanceMetric):
    def _compute(self, references: List[str], prediction: str) -> dict:
        result = self.compute(references[0], prediction)
        result["score"] = result[self.main_score]
        return result

    @abstractmethod
    def compute(self, reference, prediction: str) -> dict:
        pass


class Accuracy(SingleReferenceInstanceMetric):
    reduction_map = {"mean": ["accuracy"]}
    main_score = "accuracy"

    def compute(self, reference, prediction: str) -> dict:
        return {"accuracy": float(str(reference) == str(prediction))}