Datasets:

ArXiv:
File size: 3,980 Bytes
00b57f3
 
1d24240
 
 
 
00b57f3
 
1d24240
 
 
 
 
 
 
 
 
 
 
 
 
9a767db
1d24240
00b57f3
 
 
9a767db
 
 
 
 
 
 
 
 
 
00b57f3
 
1d24240
 
 
 
 
00b57f3
1d24240
 
00b57f3
1d24240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00b57f3
 
 
1d24240
 
 
 
9a767db
 
1d24240
 
 
 
 
 
 
 
 
00b57f3
 
 
6b8ec9b
 
 
 
1d24240
 
 
 
 
 
 
00b57f3
 
 
1d24240
 
00b57f3
 
 
1d24240
 
 
 
 
00b57f3
1d24240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from abc import ABC
from typing import Any, Dict, List, Optional

from .dataclass import InternalField
from .formats import Format, ICLFormat
from .instructions import Instruction
from .operator import Operator, SequentialOperator, StreamInstanceOperator
from .random_utils import get_random
from .templates import Template


class Renderer(ABC):
    pass
    # @abstractmethod
    # def get_postprocessors(self) -> List[str]:
    #     pass


class RenderTemplate(Renderer, StreamInstanceOperator):
    template: Template
    random_reference: bool = False
    skip_rendered_instance: bool = True

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        if self.skip_rendered_instance:
            if (
                "inputs" not in instance
                and "outputs" not in instance
                and "source" in instance
                and "target" in instance
                and "references" in instance
            ):
                return instance

        inputs = instance["inputs"]
        outputs = instance["outputs"]

        source = self.template.process_inputs(inputs)
        targets = self.template.process_outputs(outputs)

        if self.template.is_multi_reference:
            assert isinstance(targets, list), f"{targets} must be a list"
            references = targets
            if self.random_reference:
                target = get_random().choice(references)
            else:
                if len(references) == 0:
                    raise ValueError("No references found")
                target = references[0]
        else:
            references = [targets]
            target = targets

        instance.update(
            {
                "source": source,
                "target": target,
                "references": references,
            }
        )

        return instance


class RenderDemonstrations(RenderTemplate):
    demos_field: str

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        demos = instance.get(self.demos_field, [])

        processed_demos = []
        for demo_instance in demos:
            demo_instance = super().process(demo_instance)
            processed_demos.append(demo_instance)

        instance[self.demos_field] = processed_demos

        return instance


class RenderInstruction(Renderer, StreamInstanceOperator):
    instruction: Instruction

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        if self.instruction is not None:
            instance["instruction"] = self.instruction()
        else:
            instance["instruction"] = ""
        return instance


class RenderFormat(Renderer, StreamInstanceOperator):
    format: Format
    demos_field: str = None

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        demos_instances = instance.pop(self.demos_field, None)
        if demos_instances is not None:
            instance["source"] = self.format.format(
                instance, demos_instances=demos_instances
            )
        else:
            instance["source"] = self.format.format(instance)
        return instance


class StandardRenderer(Renderer, SequentialOperator):
    template: Template
    instruction: Instruction = None
    demos_field: str = None
    format: ICLFormat = None

    steps: List[Operator] = InternalField(default_factory=list)

    def prepare(self):
        self.steps = [
            RenderTemplate(template=self.template),
            RenderDemonstrations(template=self.template, demos_field=self.demos_field),
            RenderInstruction(instruction=self.instruction),
            RenderFormat(format=self.format, demos_field=self.demos_field),
        ]

    def get_postprocessors(self):
        return self.template.get_postprocessors()