Datasets:

ArXiv:
File size: 4,557 Bytes
ca10b7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b123d50
ca10b7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#####
# imports for hf system:
#####
from .artifact import __file__ as _
from .blocks import __file__ as _
from .card import __file__ as _
from .catalog import __file__ as _
from .collections import __file__ as _
from .common import __file__ as _
from .file_utils import __file__ as _

# from .fusion import __file__
from .generator_utils import __file__ as _
from .instructions import __file__ as _
from .loaders import __file__ as _
from .load import __file__ as _
from .metrics import __file__ as _
from .normalizers import __file__ as _
from .operator import __file__ as _
from .operators import __file__ as _
from .processors import __file__ as _
from .recipe import __file__ as _
from .register import __file__ as _
from .splitters import __file__ as _
from .split_utils import __file__ as _
from .stream import __file__ as _
from .task import __file__ as _
from .templates import __file__ as _
from .text_utils import __file__ as _
from .schema import __file__ as _

# from .utilize import __file__ as _
# from .validate import __file__ as _
#############

from .stream import MultiStream, Stream

from .operator import SequntialOperator, SequntialOperatorInitilizer, MultiStreamOperator, StreamInitializerOperator

from .operators import (
    ApplyValueOperatorsField,
    ApplyStreamOperatorsField,
    SplitByValue,
    MergeStreams,
    FlattenInstances,
)

import evaluate
import datasets

from datasets import (
    Features,
    Value,
    Sequence,
)

from dataclasses import field
from typing import List, Union, Dict, Optional, Generator, Any, Iterable


class MultiStreamScoreMean(MultiStreamOperator):
    def aggegate_results(self, multi_stream: MultiStream):
        scores = []
        for stream in multi_stream.values():
            instance = stream.peak()
            scores.append(instance["score"]["global"]["score"])

        from statistics import mean

        return mean(scores)

    def spread_results(self, stream: Stream, score: float):
        for instance in stream:
            instance["score"]["global"]["groups_mean_score"] = score
            yield instance

    def process(self, multi_stream: MultiStream) -> MultiStream:
        mean_score = self.aggegate_results(multi_stream)

        result = {}
        for stream_name, stream in multi_stream.items():
            result[stream_name] = Stream(self.spread_results, gen_kwargs={"stream": stream, "score": mean_score})

        return MultiStream(result)


class FromPredictionsAndOriginalData(StreamInitializerOperator):
    def zip(self, predictions, references):
        for prediction, original in zip(predictions, references):
            yield {**original, "prediction": prediction}

    def process(self, predictions: List[str], references: Iterable, split_name: str = "all") -> MultiStream:
        return MultiStream(
            {split_name: Stream(self.zip, gen_kwargs={"predictions": predictions, "references": references})}
        )


from .schema import UNITXT_DATASET_SCHEMA


class MetricRecipe(SequntialOperatorInitilizer):
    def prepare(self):
        self.steps = [
            FromPredictionsAndOriginalData(),
            ApplyValueOperatorsField(
                value_field="prediction", operators_field="processors", default_operators=["to_string"]
            ),
            SplitByValue(["group"]),
            ApplyStreamOperatorsField(
                "metrics",
                reversed=True,
            ),
            MultiStreamScoreMean(),
            MergeStreams(),
        ]


UNITXT_METRIC_SCHEMA = Features({"predictions": Value("string"), "references": dict(UNITXT_DATASET_SCHEMA)})


# @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class Metric(evaluate.Metric):
    def _info(self):
        return evaluate.MetricInfo(
            description="_DESCRIPTION",
            citation="_CITATION",
            # inputs_description=_KWARGS_DESCRIPTION,
            features=UNITXT_METRIC_SCHEMA,
            codebase_urls=["https://"],
            reference_urls=[
                "https://",
                "https://",
            ],
        )

    def _compute(self, predictions: List[str], references: Iterable, flatten: bool = False, split_name: str = "all"):
        recipe = MetricRecipe()

        multi_stream = recipe(predictions=predictions, references=references, split_name=split_name)

        if flatten:
            operator = FlattenInstances()
            multi_stream = operator(multi_stream)

        stream = multi_stream[split_name]

        return list(stream)