File size: 11,630 Bytes
fa70f1c cb12b19 7d7cc9e fa70f1c 7d7cc9e fa70f1c 7d7cc9e fa70f1c 5218ddd 7d7cc9e fa70f1c 7d7cc9e 5218ddd 7d7cc9e fa70f1c 7d7cc9e fa70f1c 7d7cc9e fa70f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import uuid
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from typing import Any, Dict, Generator, List, Optional
import evaluate
import nltk
import numpy
from .operator import (
MultiStreamOperator,
SequntialOperator,
SingleStreamOperator,
StreamingOperator,
StreamInstanceOperator,
)
from .operators import CopyFields
from .stream import MultiStream, Stream
nltk.download("punkt")
def absrtact_factory():
return {}
def abstract_field():
return field(default_factory=absrtact_factory)
class UpdateStream(StreamInstanceOperator):
update: dict
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
instance.update(self.update)
return instance
# TODO: currently we have two classes with this name. metric.Metric and matrics.Metric...
class Metric(ABC):
@property
@abstractmethod
def main_score(self):
pass
class GlobalMetric(SingleStreamOperator, Metric):
def process(self, stream: Stream, stream_name: str = None) -> Generator:
references = []
predictions = []
global_score = {}
instances = []
for instance in stream:
if "score" not in instance:
instance["score"] = {"global": global_score, "instance": {}}
else:
global_score = instance["score"]["global"]
refs, pred = instance["references"], instance["prediction"]
instance_score = self._compute([refs], [pred])
instance["score"]["instance"].update(instance_score)
references.append(refs)
predictions.append(pred)
instances.append(instance)
result = self._compute(references, predictions)
global_score.update(result)
for instance in instances:
instance["score"]["global"] = global_score
yield instance
def _compute(self, references: List[List[str]], predictions: List[str]) -> dict:
result = self.compute(references, predictions)
result["score"] = result[self.main_score]
return result
@abstractmethod
def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
pass
class InstanceMetric(SingleStreamOperator, Metric):
implemented_reductions: List[str] = field(default_factory=lambda: ["mean"])
@property
@abstractmethod
def reduction_map(self) -> dict:
pass
def process(self, stream: Stream, stream_name: str = None) -> Generator:
global_score = {}
instances = []
for instance in stream:
refs, pred = instance["references"], instance["prediction"]
instance_score = self._compute(refs, pred)
if "score" not in instance:
instance["score"] = {"global": global_score, "instance": {}}
else:
global_score = instance["score"]["global"]
instance["score"]["instance"].update(instance_score)
instances.append(instance)
for reduction, fields in self.reduction_map.items():
assert (
reduction in self.implemented_reductions
), f"Reduction {reduction} is not implemented, use one of {self.implemented_reductions}"
if reduction == "mean":
from statistics import mean
for field in fields:
global_score[field] = mean([instance["score"]["instance"][field] for instance in instances])
if field == self.main_score:
global_score["score"] = global_score[field]
for instance in instances:
yield instance
def _compute(self, references: List[List[str]], predictions: List[str]) -> dict:
result = self.compute(references=references, predictions=predictions)
result["score"] = result[self.main_score]
return result
@abstractmethod
def compute(self, references: List[str], prediction: str) -> dict:
pass
class Squad(GlobalMetric):
_metric = None
reduction_map = {"mean": ["f1"]}
main_score = "f1"
metric = "squad"
def prepare(self):
super(Squad, self).prepare()
self._metric = evaluate.load(self.metric)
def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
ids = [str(uuid.uuid4()).replace("-", "") for _ in range(len(predictions))]
formatted_predictions = [
{"prediction_text": prediction, "id": ids[i]} for i, prediction in enumerate(predictions)
]
formatted_references = [
{"answers": {"answer_start": [-1], "text": reference}, "id": ids[i]}
for i, reference in enumerate(references)
]
return self._metric.compute(predictions=formatted_predictions, references=formatted_references)
class SingleReferenceInstanceMetric(InstanceMetric):
def _compute(self, references: List[str], prediction: str) -> dict:
result = self.compute(references[0], prediction)
result["score"] = result[self.main_score]
return result
@abstractmethod
def compute(self, reference, prediction: str) -> dict:
pass
class Accuracy(SingleReferenceInstanceMetric):
reduction_map = {"mean": ["accuracy"]}
main_score = "accuracy"
def compute(self, reference, prediction: str) -> dict:
return {"accuracy": float(str(reference) == str(prediction))}
class MetricPipeline(MultiStreamOperator, Metric):
main_score: str = None
preprocess_steps: Optional[List[StreamingOperator]] = field(default_factory=list)
postpreprocess_steps: Optional[List[StreamingOperator]] = field(default_factory=list)
metric: Metric = None
def verify(self):
assert self.main_score is not None, "main_score is not set"
def prepare(self):
super().prepare()
self.prepare_score = CopyFields(
field_to_field=[
[f"score/instance/{self.main_score}", "score/instance/score"],
[f"score/global/{self.main_score}", "score/global/score"],
],
use_query=True,
)
def process(self, multi_stream: MultiStream) -> MultiStream:
for step in self.preprocess_steps:
multi_stream = step(multi_stream)
multi_stream = self.metric(multi_stream)
for step in self.postpreprocess_steps:
multi_stream = step(multi_stream)
multi_stream = self.prepare_score(multi_stream)
return multi_stream
class HuggingfaceMetric(GlobalMetric):
metric_name: str = None
main_score: str = None
scale: float = 1.0
def prepare(self):
super().prepare()
self.metric = evaluate.load(self.metric_name)
def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
result = self.metric.compute(predictions=predictions, references=references)
if self.scale != 1.0:
for key in result:
if isinstance(result[key], float):
result[key] /= self.scale
return result
class F1(GlobalMetric):
_metric = None
main_score = "f1_macro"
average = None # Report per class then aggregate by mean
metric = "f1"
def prepare(self):
super(F1, self).prepare()
self._metric = evaluate.load(self.metric)
def get_str_id(self, str):
if str not in self.str_to_id:
id = len(self.str_to_id)
self.str_to_id[str] = id
self.id_to_str[id] = str
return self.str_to_id[str]
def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
assert all(
len(reference) == 1 for reference in references
), "One single reference per predictition are allowed in F1 metric"
self.str_to_id = {}
self.id_to_str = {}
formatted_references = [self.get_str_id(reference[0]) for reference in references]
unique_labels = self.str_to_id.keys()
formatted_predictions = [self.get_str_id(prediction) for prediction in predictions]
labels = list(set(formatted_references))
result = self._metric.compute(
predictions=formatted_predictions, references=formatted_references, labels=labels, average=self.average
)
if isinstance(result["f1"], numpy.ndarray):
from statistics import mean
final_result = {self.main_score: mean(result["f1"])}
for i, label in enumerate(labels):
final_result["f1_" + self.id_to_str[label]] = result["f1"][i]
else:
final_result = {self.main_score: result["f1"]}
return final_result
class F1Micro(F1):
main_score = "f1_micro"
average = "micro"
class F1Macro(F1):
main_score = "f1_macro"
class F1MultiLabel(GlobalMetric):
_metric = None
main_score = "f1_macro"
average = None # Report per class then aggregate by mean
seperator = ","
def prepare(self):
super(F1MultiLabel, self).prepare()
self._metric = evaluate.load("f1", "multilabel")
def add_str_to_id(self, str):
if not str in self.str_to_id:
id = len(self.str_to_id)
self.str_to_id[str] = id
self.id_to_str[id] = str
return
def get_one_hot_vector(self, labels: List[str]):
result = [0] * len(self.str_to_id)
for label in labels:
if label in self.str_to_id:
result[self.str_to_id[label]] = 1
return result
def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
self.str_to_id = {}
self.id_to_str = {}
labels = list(set([label for reference in references for label in reference]))
for label in labels:
assert (
not self.seperator in label
), "Reference label (f{label}) can not contain multi label seperator (f{self.seperator}) "
self.add_str_to_id(label)
formatted_references = [self.get_one_hot_vector(reference) for reference in references]
split_predictions = [
[label.strip() for label in prediction.split(self.seperator)] for prediction in predictions
]
formatted_predictions = [self.get_one_hot_vector(prediction) for prediction in split_predictions]
result = self._metric.compute(
predictions=formatted_predictions, references=formatted_references, average=self.average
)
if isinstance(result["f1"], numpy.ndarray):
from statistics import mean
final_result = {self.main_score: mean(result["f1"])}
for i, label in enumerate(labels):
final_result["f1_" + label] = result["f1"][i]
else:
final_result = {self.main_score: result["f1"]}
return final_result
class F1MicroMultiLabel(F1MultiLabel):
main_score = "f1_micro"
average = "micro"
class F1MacroMultiLabel(F1MultiLabel):
main_score = "f1_macro"
average = None
class Rouge(HuggingfaceMetric):
metric_name = "rouge"
main_score = "rougeL"
scale = 1.0
def compute(self, references, predictions):
predictions = ["\n".join(nltk.sent_tokenize(prediction.strip())) for prediction in predictions]
references = [["\n".join(nltk.sent_tokenize(r.strip())) for r in reference] for reference in references]
return super().compute(references, predictions)
class Bleu(HuggingfaceMetric):
metric_name = "bleu"
main_score = "bleu"
scale = 1.0
|