Datasets:

ArXiv:
File size: 9,961 Bytes
94ff39a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
714e234
 
 
 
94ff39a
 
 
 
63de5fa
94ff39a
63de5fa
94ff39a
 
 
63de5fa
94ff39a
 
63de5fa
94ff39a
 
 
63de5fa
94ff39a
 
 
 
 
 
 
 
 
714e234
94ff39a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e62801
 
94ff39a
 
 
 
3e62801
 
94ff39a
 
 
 
 
4f069e4
94ff39a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""mMARCO dataset."""

import datasets


_CITATION = """
@misc{bonifacio2021mmarco,
      title={mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset},
      author={Luiz Henrique Bonifacio and Israel Campiotti and Vitor Jeronymo and Hugo Queiroz Abonizio and Roberto Lotufo and Rodrigo Nogueira},
      year={2021},
      eprint={2108.13897},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""

_URL = "https://github.com/unicamp-dl/mMARCO"

_DESCRIPTION = """
mMARCO translated datasets
"""


def generate_examples_triples(filepath, collection_path, queries_path):
    collection = {}
    with open(collection_path, encoding="utf-8") as f:
        for line in f:
            doc_id, doc = line.rstrip().split("\t")
            collection[doc_id] = doc

    queries = {}
    with open(queries_path, encoding="utf-8") as f:
        for line in f:
            query_id, query = line.rstrip().split("\t")
            queries[query_id] = query

    with open(filepath, encoding="utf-8") as f:
        for (idx, line) in enumerate(f):
            query_id, pos_id, neg_id = line.rstrip().split("\t")
            features = {
                "query": queries[query_id],
                "positive": collection[pos_id],
                "negative": collection[neg_id],
            }
            yield idx, features


def generate_examples_tuples(filepath):
    with open(filepath, encoding="utf-8") as f:
        for (idx, line) in enumerate(f):
            idx, text = line.rstrip().split("\t")
            features = {
                "id": idx,
                "text": text,
            }
            yield idx, features


def generate_examples_runs(filepath, collection_path, queries_path):
    collection = {}
    with open(collection_path, encoding="utf-8") as f:
        for line in f:
            doc_id, doc = line.rstrip().split("\t")
            collection[doc_id] = doc

    queries = {}
    with open(queries_path, encoding="utf-8") as f:
        for line in f:
            query_id, query = line.rstrip().split("\t")
            queries[query_id] = query

    qid_to_ranked_candidate_passages = {}
    with open(filepath, encoding="utf-8") as f:
        for line in f:
            qid, pid, rank = line.rstrip().split("\t")
            if qid not in qid_to_ranked_candidate_passages:
                qid_to_ranked_candidate_passages[qid] = []
            qid_to_ranked_candidate_passages[qid].append(pid)

    for (idx, qid) in enumerate(qid_to_ranked_candidate_passages):
        features = {
            "id": qid,
            "query": queries[qid],
            "passages": [
                {
                    "id": pid,
                    "passage": collection[pid],
                }
                for pid in qid_to_ranked_candidate_passages[qid]
            ],
        }
        yield idx, features


_BASE_URLS = {
    "collections": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/collections/",
    "queries-train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/queries/train/",
    "queries-dev": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/queries/dev/",
    "runs": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/runs/",
    "train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/triples.train.ids.small.tsv",
}

LANGUAGES = [
    "arabic",
    "chinese",
    "dutch",
    "english",
    "french",
    "german",
    "hindi",
    "indonesian",
    "italian",
    "japanese",
    "portuguese",
    "russian",
    "spanish",
    "vietnamese",
]


class MMarco(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = (
        [
            datasets.BuilderConfig(
                name=language,
                description=f"{language.capitalize()} triples",
                version=datasets.Version("2.0.0"),
            )
            for language in LANGUAGES
        ]
        + [
            datasets.BuilderConfig(
                name=f"collection-{language}",
                description=f"{language.capitalize()} collection version v2",
                version=datasets.Version("2.0.0"),
            )
            for language in LANGUAGES
        ]
        + [
            datasets.BuilderConfig(
                name=f"queries-{language}",
                description=f"{language.capitalize()} queries version v2",
                version=datasets.Version("2.0.0"),
            )
            for language in LANGUAGES
        ]
        + [
            datasets.BuilderConfig(
                name=f"runs-{language}",
                description=f"{language.capitalize()} runs version v2",
                version=datasets.Version("2.0.0"),
            )
            for language in LANGUAGES
        ]
    )

    DEFAULT_CONFIG_NAME = "english"

    def _info(self):
        name = self.config.name
        if name.startswith("collection") or name.startswith("queries"):
            features = {
                "id": datasets.Value("int32"),
                "text": datasets.Value("string"),
            }
        elif name.startswith("runs"):
            features = {
                "id": datasets.Value("int32"),
                "query": datasets.Value("string"),
                "passages": datasets.Sequence(
                    {
                        "id": datasets.Value("int32"),
                        "passage": datasets.Value("string"),
                    }
                ),
            }
        else:
            features = {
                "query": datasets.Value("string"),
                "positive": datasets.Value("string"),
                "negative": datasets.Value("string"),
            }

        return datasets.DatasetInfo(
            description=f"{_DESCRIPTION}\n{self.config.description}",
            features=datasets.Features(features),
            supervised_keys=None,
            homepage=_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        if self.config.name.startswith("collection"):
            url = _BASE_URLS["collections"] + self.config.name[11:] + "_collection.tsv"
            dl_path = dl_manager.download_and_extract(url)
            return (datasets.SplitGenerator(name="collection", gen_kwargs={"filepath": dl_path}),)
        elif self.config.name.startswith("queries"):
            urls = {
                "train": _BASE_URLS["queries-train"] + self.config.name[8:] + "_queries.train.tsv",
                "validation": _BASE_URLS["queries-dev"] + self.config.name[8:] + "_queries.dev.tsv",
                "dev": _BASE_URLS["queries-dev"] + self.config.name[8:] + "_queries.dev.small.tsv",
            }
            dl_path = dl_manager.download_and_extract(urls)
            return [
                datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),
                datasets.SplitGenerator(name="dev.full", gen_kwargs={"filepath": dl_path["validation"]}),
                datasets.SplitGenerator(name="dev", gen_kwargs={"filepath": dl_path["dev"]}),
            ]
        elif self.config.name.startswith("runs"):
            urls = {
                "collection": _BASE_URLS["collections"] + self.config.name[5:] + "_collection.tsv",
                "queries": _BASE_URLS["queries-dev"] + self.config.name[5:] + "_queries.dev.tsv",
                "run": _BASE_URLS["runs"] + "run.bm25_" + self.config.name[5:] + "-msmarco.txt",
            }

            dl_path = dl_manager.download_and_extract(urls)
            return (
                datasets.SplitGenerator(
                    name="bm25",
                    gen_kwargs={
                        "filepath": dl_path["run"],
                        "args": {
                            "collection": dl_path["collection"],
                            "queries": dl_path["queries"],
                        },
                    },
                ),
            )
        else:
            urls = {
                "collection": _BASE_URLS["collections"] + self.config.name + "_collection.tsv",
                "queries": _BASE_URLS["queries-train"] + self.config.name + "_queries.train.tsv",
                "train": _BASE_URLS["train"],
            }
            dl_path = dl_manager.download_and_extract(urls)

            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": dl_path["train"],
                        "args": {
                            "collection": dl_path["collection"],
                            "queries": dl_path["queries"],
                        },
                    },
                )
            ]

    def _generate_examples(self, filepath, args=None):
        """Yields examples."""

        if self.config.name.startswith("collection") or self.config.name.startswith("queries"):
            return generate_examples_tuples(filepath)
        if self.config.name.startswith("runs"):
            return generate_examples_runs(filepath, args["collection"], args["queries"])
        else:
            return generate_examples_triples(filepath, args["collection"], args["queries"])