File size: 3,803 Bytes
99f149a 63de5fa ef78ab9 99f149a 63de5fa 398c1eb 63de5fa 398c1eb 63de5fa ef78ab9 63de5fa ef78ab9 99f149a ef78ab9 99f149a 1245e6f 99f149a ef78ab9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
# Dataset Summary
**mMARCO** is a multilingual version of the [MS MARCO passage ranking dataset](https://microsoft.github.io/msmarco/).
For more information, checkout our papers:
* [**mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897)
* [**A cost-benefit analysis of cross-lingual transfer methods**](https://arxiv.org/abs/2105.06813)
There are two translated versions of mMARCO.
* **v1**
In v1 version, we use MarianNMT an open-source neural machine translation framework [made available](https://huggingface.co/Helsinki-NLP) by the Language Technology Research Group at the University of Helsinki for more than a thousand language pairs for translation. This version comprises 8 languages: Chinese, French, German, Indonesian, Italian, Portuguese, Russian and Spanish. In the paper, we refer to these models as "Helsinki".
* **v2 (Recommended)**
In v2 version, we use Google Translate to translate the dataset. In this commercial translation version, besides the 8 languages from v1, we add other 5 languages: Japanese, Dutch, Vietnamese, Hindi and Arabic.
### Supported languages
| Language name | Language code | v1 | v2 |
|---------------|---------------| ✓ | ✓ |
| English | english | ✓ | ✓ |
| Chinese | chinese | ✓ | ✓ |
| French | french | ✓ | ✓ |
| German | german | ✓ | ✓ |
| Indonesian | indonesian | ✓ | ✓ |
| Italian | italian | ✓ | ✓ |
| Portuguese | portuguese | ✓ | ✓ |
| Russian | russian | ✓ | ✓ |
| Spanish | spanish | ✓ | ✓ |
| Arabic | arabic | | ✓ |
| Dutch | dutch | | ✓ |
| Hindi | hindi | | ✓ |
| Japanese | japanese | | ✓ |
| Vietnamese | vietnamese | | ✓ |
# Dataset Structure
You can load mMARCO dataset by choosing a specific language. We include training triples (query, positive and negative example), the translated collections of documents and queries.
#### Training triples
```
>>> dataset = load_dataset('mmarco', 'english')
>>> dataset['train'][1]
{'query': 'what fruit is native to australia', 'positive': 'Passiflora herbertiana. A rare passion fruit native to Australia. Fruits are green-skinned, white fleshed, with an unknown edible rating. Some sources list the fruit as edible, sweet and tasty, while others list the fruits as being bitter and inedible.assiflora herbertiana. A rare passion fruit native to Australia. Fruits are green-skinned, white fleshed, with an unknown edible rating. Some sources list the fruit as edible, sweet and tasty, while others list the fruits as being bitter and inedible.', 'negative': 'The kola nut is the fruit of the kola tree, a genus (Cola) of trees that are native to the tropical rainforests of Africa.'}
```
#### Queries
```
>>> dataset = load_dataset('mmarco', 'queries-spanish')
>>> dataset['train'][1]
{'id': 634306, 'text': '¿Qué significa Chattel en el historial de crédito'}
```
#### Collection
```
>>> dataset = load_dataset('mmarco', 'collection-portuguese')
>>> dataset['collection'][100]
{'id': 100, 'text': 'Antonín Dvorák (1841-1904) Antonin Dvorak era filho de açougueiro, mas ele não seguiu o negócio de seu pai. Enquanto ajudava seu pai a meio tempo, estudou música e se formou na Escola de Órgãos de Praga em 1859.'}
```
# Citation Information
```
@misc{bonifacio2021mmarco,
title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
eprint={2108.13897},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|