Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 2,070 Bytes
73b8544
 
4c8e23b
 
 
 
 
 
 
 
 
 
dea2aaf
 
 
26344b5
 
 
 
 
4c8e23b
 
 
 
 
dea2aaf
 
26344b5
 
73b8544
e89f235
596a864
 
659f658
323aa7e
 
 
f90fe51
 
e89f235
b2fb11c
 
b7af2b4
 
f90fe51
b2fb11c
 
 
748d1cc
 
 
 
 
 
 
 
 
 
 
b2fb11c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: openrail++
dataset_info:
  features:
  - name: text
    dtype: string
  - name: tags
    dtype: float64
  splits:
  - name: train
    num_bytes: 2105604
    num_examples: 12682
  - name: validation
    num_bytes: 705759
    num_examples: 4227
  - name: test
    num_bytes: 710408
    num_examples: 4214
  download_size: 2073133
  dataset_size: 3521771
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
---

## Ukrainian Toxicity Dataset

This is the first of its kind toxicity classification dataset for the Ukrainian language. The datasets was obtained semi-automatically by toxic keywords filtering. For manually collected datasets with crowdsourcing, please, check [textdetox/multilingual_toxicity_dataset](https://huggingface.co/datasets/textdetox/multilingual_toxicity_dataset).

Due to the subjective nature of toxicity, definitions of toxic language will vary. We include items that are commonly referred to as vulgar or profane language. ([NLLB paper](https://arxiv.org/pdf/2207.04672.pdf))

## Dataset formation:
1. Filtering Ukrainian tweets so that only tweets containing toxic language remain with toxic keywords. Source data: https://github.com/saganoren/ukr-twi-corpus
2. Non-toxic sentences were obtained from a previous dataset of tweets as well as sentences from news and fiction from UD Ukrainian IU: https://universaldependencies.org/treebanks/uk_iu/index.html
3. After that, the dataset was split into a train-test-val and all data were balanced both by the toxic/non-toxic criterion and by data source.

Labels: 0 - non-toxic, 1 - toxic.

## Load dataset: 
```
from datasets import load_dataset
dataset = load_dataset("ukr-detect/ukr-toxicity-dataset") 
```

## Citation

```
@article{dementieva2024toxicity,
  title={Toxicity Classification in Ukrainian},
  author={Dementieva, Daryna and Khylenko, Valeriia and Babakov, Nikolay and Groh, Georg},
  journal={arXiv preprint arXiv:2404.17841},
  year={2024}
}
```