Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
intent-classification
Languages:
English
Size:
1K - 10K
License:
File size: 4,983 Bytes
2f93a00 497f2eb 2f93a00 497f2eb 2f93a00 60e626e 4d34797 078db3b cae486f 078db3b cae486f 078db3b cae486f ec80f9d b170980 2f93a00 60e626e 2f93a00 60e626e 2f93a00 15d99ae 2f93a00 ec80f9d 2f93a00 15d99ae b170980 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
---
annotations_creators:
- crowdsourced
- found
language_creators:
- crowdsourced
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- extended|other-nus-sms-corpus
task_categories:
- text-classification
task_ids:
- intent-classification
paperswithcode_id: sms-spam-collection-data-set
pretty_name: SMS Spam Collection Data Set
dataset_info:
config_name: plain_text
features:
- name: sms
dtype: string
- name: label
dtype:
class_label:
names:
'0': ham
'1': spam
splits:
- name: train
num_bytes: 521752
num_examples: 5574
download_size: 358869
dataset_size: 521752
configs:
- config_name: plain_text
data_files:
- split: train
path: plain_text/train-*
default: true
train-eval-index:
- config: plain_text
task: text-classification
task_id: binary_classification
splits:
train_split: train
col_mapping:
sms: text
label: target
metrics:
- type: accuracy
name: Accuracy
- type: f1
name: F1 macro
args:
average: macro
- type: f1
name: F1 micro
args:
average: micro
- type: f1
name: F1 weighted
args:
average: weighted
- type: precision
name: Precision macro
args:
average: macro
- type: precision
name: Precision micro
args:
average: micro
- type: precision
name: Precision weighted
args:
average: weighted
- type: recall
name: Recall macro
args:
average: macro
- type: recall
name: Recall micro
args:
average: micro
- type: recall
name: Recall weighted
args:
average: weighted
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** http://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
- **Repository:**
- **Paper:** Almeida, T.A., Gomez Hidalgo, J.M., Yamakami, A. Contributions to the study of SMS Spam Filtering: New Collection and Results. Proceedings of the 2011 ACM Symposium on Document Engineering (ACM DOCENG'11), Mountain View, CA, USA, 2011.
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The SMS Spam Collection v.1 is a public set of SMS labeled messages that have been collected for mobile phone spam research.
It has one collection composed by 5,574 English, real and non-enconded messages, tagged according being legitimate (ham) or spam.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
English
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
- sms: the sms message
- label: indicating if the sms message is ham or spam, ham means it is not spam
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
@inproceedings{Almeida2011SpamFiltering,
title={Contributions to the Study of SMS Spam Filtering: New Collection and Results},
author={Tiago A. Almeida and Jose Maria Gomez Hidalgo and Akebo Yamakami},
year={2011},
booktitle = "Proceedings of the 2011 ACM Symposium on Document Engineering (DOCENG'11)",
}
### Contributions
Thanks to [@czabo](https://github.com/czabo) for adding this dataset. |