Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
License:
File size: 5,456 Bytes
d53eaf3 4e4b258 d53eaf3 4e4b258 14ab4d5 d53eaf3 3f276e9 f9de96c cd89d3c 461a9d1 d53eaf3 3f276e9 d53eaf3 f7b9877 d53eaf3 f7b9877 d53eaf3 ed80800 d53eaf3 3f276e9 d53eaf3 3f276e9 d53eaf3 3f276e9 d53eaf3 3f276e9 d53eaf3 cd89d3c d53eaf3 cd89d3c d53eaf3 cd89d3c d53eaf3 cd89d3c d53eaf3 cd89d3c d53eaf3 cd89d3c d53eaf3 ed80800 461a9d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- gpl-3.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: Tweets Hate Speech Detection
dataset_info:
features:
- name: label
dtype:
class_label:
names:
'0': no-hate-speech
'1': hate-speech
- name: tweet
dtype: string
splits:
- name: train
num_bytes: 3191888
num_examples: 31962
- name: test
num_bytes: 1711606
num_examples: 17197
download_size: 4738708
dataset_size: 4903494
train-eval-index:
- config: default
task: text-classification
task_id: binary_classification
splits:
train_split: train
col_mapping:
tweet: text
label: target
metrics:
- type: accuracy
name: Accuracy
- type: f1
name: F1 binary
args:
average: binary
- type: precision
name: Precision macro
args:
average: macro
- type: precision
name: Precision micro
args:
average: micro
- type: precision
name: Precision weighted
args:
average: weighted
- type: recall
name: Recall macro
args:
average: macro
- type: recall
name: Recall micro
args:
average: micro
- type: recall
name: Recall weighted
args:
average: weighted
---
# Dataset Card for Tweets Hate Speech Detection
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Home](https://github.com/sharmaroshan/Twitter-Sentiment-Analysis)
- **Repository:** [Repo](https://github.com/sharmaroshan/Twitter-Sentiment-Analysis/blob/master/train_tweet.csv)
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** [Darshan Gandhi](darshangandhi1151@gmail.com)
### Dataset Summary
The objective of this task is to detect hate speech in tweets. For the sake of simplicity, we say a tweet contains hate speech if it has a racist or sexist sentiment associated with it. So, the task is to classify racist or sexist tweets from other tweets.
Formally, given a training sample of tweets and labels, where label ‘1’ denotes the tweet is racist/sexist and label ‘0’ denotes the tweet is not racist/sexist, your objective is to predict the labels on the given test dataset.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The tweets are primarily in English Language.
## Dataset Structure
### Data Instances
The dataset contains a label denoting is the tweet a hate speech or not
```
{'label': 0, # not a hate speech
'tweet': ' @user when a father is dysfunctional and is so selfish he drags his kids into his dysfunction. #run'}
```
### Data Fields
* label : 1 - it is a hate speech, 0 - not a hate speech.
* tweet: content of the tweet as a string.
### Data Splits
The data contains training data with :31962 entries
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
Crowdsourced from tweets of users
#### Who are the source language producers?
Cwodsourced from twitter
### Annotations
#### Annotation process
The data has been precprocessed and a model has been trained to assign the relevant label to the tweet
#### Who are the annotators?
The data has been provided by Roshan Sharma
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
With the help of this dataset, one can understand more about the human sentiments and also analye the situations when a particular person intends to make use of hatred/racist comments
### Discussion of Biases
The data could be cleaned up further for additional purposes such as applying a better feature extraction techniques
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Roshan Sharma
### Licensing Information
[Information](https://github.com/sharmaroshan/Twitter-Sentiment-Analysis/blob/master/LICENSE)
### Citation Information
[Citation](https://github.com/sharmaroshan/Twitter-Sentiment-Analysis/blob/master/CONTRIBUTING.md)
### Contributions
Thanks to [@darshan-gandhi](https://github.com/darshan-gandhi) for adding this dataset. |